162-WP-004-001

HDF-EOS Interface Based on HDF5,
Volume 1: Overview and Examples

White Paper

White paper - Not intended for formal review
or Government approval.

December 1999
Prepared Under Contract NAS5-60000

RESPONSIBLE ENGINEER

Larry Klein /s/ 12-16-99
David Wynne, Alex Muslimov, Abe Taaheri, Date

Ray Milburn, Larry Klein
EOSDIS Core System Project

SUBMITTED BY

Robert Plante /s/ 12-16-99

Robert Plante, Manager, Science Office Date
EOSDIS Core System Project

Raytheon Systems Company
Upper Marlboro, Maryland

This page intentionally left blank.

Preface

This document is a Users Guide for HDF-EOS (Hierarchical Data Format - Earth Observing
System) library tools. The version described in this document is HDF-EOS Version 3.0. The
software is based on HDF5, a new version of HDF provided by NCSA. HDF5 is a complete
rewrite of the earlier HDF4 version, containing a different data model and user interface.
HDF-EOS V3.0 incorporates HDF5, and keeps the familier HDF4-based interface, There are a
few exceptions and these exceptions are described in this document. Note that the contents of
this document describe a prototype library, which is not yet operational. Release of an
operational version is subject to NASA approval, but is expected in the summer of 2000.

HDF is the scientific data format standard selected by NASA as the baseline standard for EOS.
This Users Guide accompanies Version 3 software, which is available to the user community on
the EDHSL1 server. This library is aimed at EOS data producers and consumers, who will develop
their data into increasingly higher order products. These products range from calibrated Level 1
to Level 4 model data. The primary use of the HDF-EOS library will be to create structures for
associating geolocation data with their associated science data. This association is specified by
producers through use of the supplied library. Most EOS data products which have been
identified, fall into categories of point, grid or swath structures, the latter two of which are
implemented in the current version of the library. Services based on geolocation information will
be built on HDF-EQOS structures. Producers of products not covered by these structures, e.g. non-
geolocated data, can use the standard HDF libraries.

In the ECS (EOS Core System) production system, the HDF-EOS library will be used in
conjunction with SDP (Science Data Processing) Toolkit software. The primary tools used in
conjunction with HDF-EOS library will be those for metadata handling, process control and
status message handling. Metadata tools will be used to write ECS inventory and granule specific
metadata into HDF-EQS files, while the process control tools will be used to access physical file
handles used by the HDF tools. (SDP Toolkit Users Guide for the ECS Project, June 1999,
333-CD-500-001).

HDF-EOS is an extension of NCSA (National Center for Supercomputing Applications) HDF
and uses HDF library calls as an underlying basis. Version 5-1.2.0 of HDF is used.The library
tools are written in the C language and a FORTRAN interface is provided. The current version
contains software for creating, accessing and manipulating Grid and Swath structures. This
document includes overviews of the interfaces, and code examples. EOSView, the HDF-EOS
viewing tool, has been revised to accommodate the current version of the library.

Technical Points of Contact within EOS are:

Larry Klein, larry@eos.hitc.com
David Wynne, davidw@eos.hitc.com

ii 162-WP-004-001

An email address has been provided for user help:

pgstlkit@eos.hitc.com

Any questions should be addressed to:

Data Management Office

The ECS Project Office

Raytheon Systems Company
1616 McCormick Drive

Upper Marlboro, MD 20774-5301

162-WP-004-001

Abstract

This document will serve as the user’s guide to the prototype HDF-EOS file access library based
on HDF5. HDF refers to the scientific data format standard selected by NASA as the baseline
standard for EOS, and HDF-EOS refers to EOS conventions for using HDF. This document will
provide information on the use of the two interfaces included in this version — Swath, and Grid -
including overviews of the interfaces, and code examples. This document should be suitable for
use by data producers and data users alike.

Keywords: HDF-EOS, HDF5, Metadata, Standard Data Format, Standard Data Product, Disk
Format, Grid, Swath, Projection, Array, Browse

% 162-WP-004-001

This page intentionally left blank.

Vi 162-WP-004-001

Contents

1.1
1.2
13
1.4
1.5

2.1
2.2

3.1
3.2
3.3
3.4
3.5

Preface

Abstract

1. Introduction

TAENTITICATION ... e e 1-1
Yol 0] o TP 1-1
PUrpose and ODJECHIVESt 1-1
Status and Schedule ... 1-2
DocUMENt OrganizZationc.oiuei it e e 1-2

Parent DOCUIMENTS ...t e 2-1

Related DOCUMEBNTS . ..ottt 2-1

BaCKGrOUNG. ... e 3-1
DeSign PhilOSOPNY ... 3-1
PACKAGING . et 3-2
Operations Concept for the HDF5 Based Prototype Library ..., 3-3
Differences Between HDF-EOS V2.5 (HDF4 based) and

HDF-EOS V3.0 (HDF5 based)cuiuiriiiiiii e, 3-3

vii 162-WP-004-001

4.1

4.2
4.3

4.4

5.1

5.2
5.3

5.4
5.5

4. Swath Data

411 DataFields ...
4.1.2 Geolocation Fieldscccooiiiiiiiiii
4.1.3 DIMENSIONS. ..ottt e
4.1.4 DImeNnSioN MapsS......couvvvriiiiiiiiiiiiiiieeienians
415 INAEX ot

Applicability.........coooi

The Swath Data INnterface.unn e aes

431 SWAPIROULINES. ...
4.3.2 Fileldentifiersoovooneie i
4.3.3 Swath Identifiers.coovneiiee i

Programming Model ...

I OAUCTION. . . e e

511 DataFieldsooooiii
B5.1.2 DIMENSIONSttt ettt e
5.1.3 Projections.coverviiii i

Applicability.

The Grid Data INterface.oooeeeee i

5.3.1 GD API ROULINES
5.3.2 File Identifiersuun e
5.3.3 Grid 1dentifiers.uun e

Programming Model ...,

(T O o U 7 o[
55.1 GCTP Projection Codescovvviiiiiiiinninnnnnn.
552 UTM Z0oNe COUES .. .ovieieeiiiieieieieieieaeeen,
5.5.3 GCTP Spheroid Codes.........c.oovvviiiiiiiiiiiiiinnnnn.
5.5.4 Projection Parameters..........c.coovvviiiiiiiiiieinnnnnnnn.

viii

162-WP-004-001

6. Examples of HDF-EOS Library Usage

6.1 SWath EXAMPIES ..o 6-1
6.1.1 Creatinga Simple SWath ... 6-1
6.1.2 Performing Subsetting fora Swath ..o, 6-8
6.2 Grid EXAMPIES ... 6-20
6.2.1 Creatinga SImple Gridot 6-20
6.2.2 Performing Subsetting for a Grid...........ccoooiiiiiiii e 6-44
6.3 Combining HDF and HDF-EOS ODJCTS........ouviiiiiiiii e 6-47
6.3.1 Adding HDF-EOS Structures to an Existing HDF File 6-47
7. Writing ODL Metadata into HDF-EOS
7.1 A CExample of Metadata WIec.oiiiii e e ee e 7-1
7.2 G C00R ..t 7-1
7.3 The Metadata Configuration File (MCF) for Code in Section 7.2.............cccoveiviinnns 7-8
7.4 The ODL Ouput File Which Results from Runningcccooviiiiiiiiiiene, 7-16
7.5 The file filetable.temp used for example in Section 7.2............ccoooiiiiiiiiiiii e, 7-25
Appendix A. Installation and Maintenance
List of Figures
4-1. A Typical Satellite Swath: Scanning Instrument ... 4-1
4-2. A Swath Derived from a Profiling Instrument ... 4-2
4-3. A “Normal” DIMension Mapouuuuiii i 4-4
4-4. A “Backwards” DIimension Map........oviuiiritii i 4-4
5-1. A Data Field in a Mercator-projected Gridc..oiieiiiiiiiii e 5-1
5-2. A Data Field in an Interrupted Goode’s Homolosine-Projected Grid........................ 5-2

IX 162-WP-004-001

3-1.

4-1.
5-1.
5-2.
5-3.

List of Tables

HDF-EQOS 3.0 (Prototype) Current Modifications to the HDF4-Based

HDF-EOS Library (2.5) ..o
Summary of the Swath Interface..............oooiiiii
Summary of the Grid Interface...............ccoiiiiiiiii e,
Projection Transformation Package Projection Parameters

Projection Transformation Package Projection Parameters Elements

Abbreviations and Acronyms

162-WP-004-001

1. Introduction

1.1 Identification

The HDF-EOS User’'s Guide for the ECS Project was prepared under the Earth Observing
System Data and Information System (EOSDIS) Core System (ECS), Contract (NAS5-60000).

1.2 Scope

This document is intended for use by anyone who wishes to write software to create or read EOS
data products. Users of this document will likely include EOS instrument team science software
developers and data product designers, DAAC personnel, and end users of EOS data products
such as scientists and researchers.

Note: This current document describes a prototype library based on HDF5. Official NASA
support of this new data format is not yet at hand. This recognition is expected in early 2000. In
the near term, an HDF-EOS interface for both HDF4 and HDF5 based files will be provided. The
HDF4 based library is currently V2.5.

1.3 Purpose and Objectives

This document will serve as a user’s guide for the HDF-EOS file access library developed for
ECS. Upon reading this document, the reader should have a thorough understanding of each data
model and corresponding programming interface provided as part of HDF-EOS. Specifically,
this user’s guide contains an overview of each data model, a complete function-by-function
reference for each software interface, and sample programs illustrating the basic features of each
interface.

The reader should note that this paper will not discuss the HDF structures underlying HDF-EOS
nor the specific conventions employed. For more information on HDF, its design philosophy,
and its logical and physical formats, the reader is referred to NCSA documentation listed in
Section 2.2 Applicable Documents. For more information on the conventions employed by
HDF-EOS, the reader is referred to the various design White Papers listed in Section 2.2.

I mportant Note:

The FORTRAN-literate reader is cautioned that dimension ordering is row-major in C (last
dimension varying fastest), whereas FORTRAN uses column-major ordering (first dimension
varying fastest). Therefore, FORTRAN programmers should take care to use dimensions in the
reverse order to that shown in the text of this document. (FORTRAN code examples are correct
as written.)

1-1 162-WP-004-001

1.4 Status and Schedule
December, 1999, Prototype HDF5 based Library Available
August, 2000, SCF version including both HDF4 and HDF5 support available.

June, 2001, ECS support available.

Note that this schedule is proposed to NASA, but not yet accepted at the time of this writing.

1.5 Document Organization

This document is organized as follows:

Section 1 Introduction - Presents Scope and Purpose of this document

Section 2 Related Documentation

Section 3 Overview of HDF-EQOS - Background and design features of the library.
Section 4 Swath Data - Design features and listing of the HDF-EOS Swath Library.
Section 6 Grid Data - Design features and listing of the HDF-EOS Grid Library.
Section 7 Examples - A selection of programming examples.

Section 8. Examples of SDP Toolkit Usage - How to use the HDF-EOS Library in
conjunction with the SDP Toolkit.

Appendix A Installation Instructions, Test Drivers, User Feedback

Acronyms

The accompanying Function Reference Guide is organized as follows:

Section 1 Introduction
Section 2 Reference - Specification of the HDF-EOS Swath and Grid
APIs Function

Acronyms

1-2 162-WP-004-001

2. Related Documentation

2.1 Parent Documents

The following documents are the parents from which this document’s scope and content derive:

170-TP-5001(The HDF-EOS Library Users Guide for the ECS Project, Volume
1:Overview and Examples

170-TP-501[] The HDF-EOS Library Users Guide for the ECS Project, Volume 2:
Function Reference Guide

456-TP-013 The HDF-EOS Design Document for the ECS Project

170-WP-002 Thoughts on HDF-EOS Metadata, A White Paper for the ECS Project

170-WP-003 The HDF-EOS Swath Concept, A White Paper for the ECS Project

170-WP-011 The HDF-EOS Grid Concept, A White Paper for the ECS Project

2.2 Related Documents

The following documents are referenced within this technical paper, or are directly applicable, or
contain policies or other directive matters that are binding upon the content of this document.

333-CD-003 Release A SCF Toolkit Users Guide for the ECS Project

163-WP-0011] An ECS Data Provider’s Guide to Metadata in Release A, A White
Paper for the ECS Project

175-WP-0011! HDF-EOS Primer for Version 1 EOSDIS, A White Paper for the ECS
Project

none Introduction to HDF5 Release 1.2, University of Illinois, October,
1999

none HDF5: API Specification Reference Manual, October, 1999

none Getting Started with HDF, Version 3.2, University of Illinois, May
1993

none NCSA HDF Reference Manual, Version 3.3, University of Illinois,
February 1994

none NCSA HDF Specification and Developer’s Guide, Version 3.2,
University of Illinois, September 1993

none NCSA HDF User’s Guide, Version 4.0, University of Illinois,
February 1996

2-1 162-WP-004-001

none

none

none

none

none

none

none

NCSA HDF User’s Guide, Version 3.3, University of Illinois, March
1994

An Album of Map Projections, USGS Professional Paper 1453, Snyder
and Voxland, 1989

Map Projections - A Working Manual, USGS Professional Paper 1395,
Snyder, 1987

The WMO Format for the Storage of Weather Product Information and
the Exchange of Weather Product Messages in Gridded Binary Form,
John D. Stackpole, Office Note 388, GRIB Edition 1, U.S. Dept. of
Commerce, NOAA, National Weather Service National
Meteorological Center, Automation Division, Section 1, pp. 9-12, July
1, 1994,

The Michigan Earth Grid: Description, Registration Method for SSM/I
Data, and Derivative Map Projection, John F. Galntowicz, Anthony W.
England, The University of Michigan, Radiation Laborartory, Ann
Arbor, Michigan, Feb. 1991.

Selection of a Map Grid for Data Analysis and Archiva, William B.
Rossow, and Leonid Garder, American Meteorological Society Notes,
pp. 1253-1257, Aug. 1984,

Level-3 SeaWiFS Data Products: Spatial and Temporal Binning
Algorithms, Janet W. Campbell, John M. Blaisdell, and Michael Darzi,
NASA Technical Memorandum 104566, GSFC, Volume 32, Appendix
A, Jan. 13, 1995.

2-2 162-WP-004-001

3. Overview of HDF-EOS

3.1 Background

The Hierarchical Data Format (HDF) has been selected by the EOSDIS Project as the format of
choice for standard product distribution. HDF is a function library that was originally developed
by the National Center for Supercomputing Applications (NCSA) at the University of Illinois at
Urbana-Champaign to provide a portable storage mechanism for supercomputer simulation
results. Although this user’s guide does not attempt to explain the inner workings of NCSA
HDF, a cursory knowledge of HDF may help the reader to understand the basic workings of
HDF-EOS.

HDF5 files consist of a directory and a collection of data objects. Every data object has a
directory entry, containing a pointer to the data object location, and information defining the
datatype (much more information about HDF can be found in the NCSA documentation
referenced in Section 2.2 of this Guide). Unlike HDF4, there are only two fundamental data
objects in HDF5. These objects are groups and dataspaces. The HDF4 data types such as vdatas
and scientific data sets are mapped into the more general class of dataspaces.

To bridge the gap between the needs of EOS data products and the capabilities of HDF, three
new EOS specific datatypes — point, swath, and grid — have been defined within the HDF
framework. Each of these new datatypes is constructed using conventions for combining
standard HDF datatypes and is supported by a special application programming interface (API)
which aids the data product user or producer in the application of the conventions. The APIs
allow data products to be created and manipulated in ways appropriate to each datatype, without
regard to the actual HDF objects and conventions underlying them.

The sum of these new APIs comprise the HDF-EOS library. The Point interface is designed to
support data that has associated geolocation information, but is not organized in any well defined
spatial or temporal way. The Swath interface is tailored to support time-ordered data such as
satellite swaths (which consist of a time-ordered series of scanlines), or profilers (which consist
of a time-ordered series of profiles). The Grid interface is designed to support data that has been
stored in a rectilinear array based on a well defined and explicitly supported projection.

Note that in this current protoype version, the Point interface is not implemented.

3.2 Design Philosophy

Since the HDF-EOS library is intended to support end users of EOS data as well as EOS data
producers, it is essential that HDF-EOS be available separately from other ECS software. For
this reason, HDF-EOS does not rely on any other ECS software, including the SDP Toolkit. It is
treated as an extension to the HDF library and, as such, it follows the general design philosophy
and coding style of HDF. For more information on the design of HDF, please refer to the
appropriate NCSA documentation listed in Section 2.2.

3-1 162-WP-004-001

3.3 Packaging

Because of the functional overlap of HDF, HDF-EOS, and the SDP Toolkit, it is important to
understand what each one contains and how they are related. NCSA HDF is a subroutine library
freely available as source code from the National Center for Supercomputing Applications. The
basic HDF library has its own documentation, and comes with a selection of simple utilities.

HDF-EQOS is a higher level library available from the ECS project as an add-on to the basic HDF
library. It requires NCSA HDF for successful compiling and linking and will be widely available
(at no charge) to all interested parties. Although at the time of this writing, the exact packaging
has yet to be determined, the basic HDF library will also be available from the ECS project.

The SDP Toolkit is a large, complex library of functions for use by EOS data producers. It
presents a standard interface to Distributed Active Archive Center (DAAC) services for data
processing, job scheduling, and error handling. While the SDP Toolkit may be available to
individual researchers, it is unlikely to be of great use outside of EOS DAACs and Science
Computing Facilities (SCF). The Toolkit distribution includes source code for both HDF and
HDF-EOS.

EOS instrument data producers will use the SDP Toolkit in conjunction with the HDF-EOS and
HDF libraries. Of primary importance will be process control and metadata handling tools. The
former will be used to access physical file handles required by the HDF library. The SDP Toolkit
uses logical file handles to access data, while HDF (HDF-EOS) requires physical handles. Users
will be required to make one additional call, using the SDP toolKkit to access the physical handles.
Please refer to the SDP Toolkit Users Guide for the ECS Project, Mar, 1998, 333-CD-100-001,
Section 6.2.1.2 for an example). Section 7 of this document gives examples of HDF-EOS usage
in conjunction with the SDP Toolkit.

Metadata tools will be used to access and write inventory and granule specific metadata into their
designated HDF structures. Please refer to Section 6.2.1.4 of the SDP Toolkit Users Guide.

Note that in this current prototype, only read and write metadata functions have been
implemented to use HDF5 based files.

We make an important distinction between granule metadata and the structural metadata referred
to in the software description below. Structural metadata specifies the internal HDF-EOS file
structure and the relationship between geolocation data and the data itself. Structural metadata is
created and then accessed by calling the HDF-EOS functions. Granule metadata will be used by
ECS to perform archival services on the data. A copy will attached to HDF-EOS files by SDP
toolkit calls and another copy is placed in the ECS archives. The two sets of metadata are not
dynamically linked. However, the data producer should use consistent naming conventions when
writing granule metadata when calling the HDF-EOS API. Please refer to the examples in
Section 7, below.

3-2 162-WP-004-001

3.4 Operations Concept for the HDF5 Based Prototype Library

HDF5 is a nearly complete rewrite of HDF4 and contains a different user APl and underlying
data model. An HDF-EOS library written in conjunction with HDF5 and which uses HDF5
functionality, will necessarily be a rewrite of the HDF4 - based version. The new HDF5 - based
library will support the same Grid/Point/Swath functionality and to the extent possible and will
be built with the same calling sequences as the original library. We will refer to the newer library
as HDF-EQOS 3.0. The former library is currently designated HDF-EOS 2.5. (The HDF-EQOS
Library Users Guide for the ECS Project, Volume 1 and Volume 2)

The following future uses for HDF-EQOS are anticipated:
A. Product developers reading and writing HDF4 - based files.
B. ECS subsystems reading and writing HDF4 - based files.

C. Product developers reading and writing HDF5 - based files. This will include both users
retrofitting HDF4-based software and users starting from scratch with HDF5.

D. ECS subsystems reading and writing HDF5 - based files.
E. Data migration applications, i.e. read HDF4 and write HDF5.

HDF-EOS 3.0 support for HDF5 will have the same function calls as the current HDF-EOS 2.5
support for HDF4. There will be a few additions, such as calls to account for HDF5
implementation of ragged arrays. The parameters in the V3.0 function calls will be the same, to
the extent possible. The name of the function calls will be the same. This implementation will
entail the fewest possible modifications with respect to retrofitting code, i.e. removing HDF4 file
access in favor of HDF5 file access. Users retrofitting old code, should anticipate changing
variable types to accommodate new HDF5 variable types. The API will make the underlying
HDF5 data model transparent otherwise.

If a user outside ECS wants to be able to read HDF4 files and write HDF5 files, we recommend
using C++ class libraries. In that way, HDF4 and HDF5 based function names can remain the
same. Another method will be to provide a parallel HDF5 based library in which function
names have been changed. For example, SWopen() becomes SWopen5(). We will provide
installation scripts, which will install HDF4 and/or HDF5 - based libraries based on user
preference. This parallel library is not implemented in the prototype.

Support will be provided for the current suite of UNIX and Windows operating systems. F77,
F90, C and C++ interfaces will continue to be supported.

3.5 Differences Between HDF-EOS V2.5 (HDF4 based) and HDF-EOS
V3.0 (HDF5 based)

There are several important differences between the Versions 2.5 and 3.0 of the HDF-EOS
library that are briefly summarized in this section. An overview of modifications to the HDF4
base library is listed in Table 3.1

3-3 162-WP-004-001

Table 3-1. HDF-EOQOS 3.0 (Prototype) Current Modifications to the HDF4-Based

HDF-EQOS Library (2.5)
Function Change Description
Swath Access e Modify to implement new HDF5 file structure.
e Create a swath with a specified name
Swath Definition e Add an additional parameter, 'maxdimlist’, a list of maximum sizes of

dimensions. This will account for feature of appendibility of each
dimension in a dataset.

e Add a new function for chunking in HDF5 (SWdefchunk())

Swath Inquiry < No new functionality or interface changes.

Swath Input/output | « Add unsigned long type to store large number of elements in attributes.
e Change 'start,stride, edge' parameter type to allow for very large

numbers.
Swath Subset * No new functionality or interface changes.
New interfaces e SWinqdatatype() retrieve information about data type of a data field

e SWraopen(),SWraread(),SWrawrite(), SWraclose() - Support HDF5
ragged array structures.

Grid Access e Modify to implement new HDF5 file structure.
e Create a grid with a specified name
Grid Definition e GDdeffield() modified to add 'maxdimlist’, a comma separated list of

maximum dimensions - same as for Swath

e Modify functions to support HDF5 chunking: GDdeftile() and
GDdefcomp() and GDdefchunk().

Grid Input/Output e Add unsigned long type to store large number of elements in attributes.

Grid Inquiry * No new functionality or interface changes

Grid Subset * No new functionality or interface changes

Grid Tiling * No new functionality or interface changes

Utilities e Add function for determining whether a file is HDF4 or HDF5 based.

EOSView « Modified to accommodate new HDF5-based HDF-EQOS library. This is a
new tool

e which will compliment the original HDF4 - based tool. Removed HDF4
support. Added about 200 lines of code for HDF5 support.

Selected user considerations are listed below.

The routines SWopen(), SWcreate(), GDopen(), GDcreate() implement a new file structure
designed for the V3.0 of the HDF-EOS library.

The field definition routines, SWdefgeofield(), SWdefdatafield(), and GDdeffield(), have an
additional parameter 'maxdimlist’, a coma separated list of maximum sizes of dimensions. The
parameter 'maxdimlist’ is reserved for future use. Since in HDF5 each dimension of a dataset can
be appendable (extendible), the definition of a dataset should include the maximum size (or
unlimited size) the corresponding dimension can be expanded to. Passing a NULL as a
'maxdimlist’ means that the dimension is not appendable, and its maximum size is the same as its
actual size. The unlimited dimension can be specified e.g by a call to SWdefdim(sw_id,

3-4 162-WP-004-001

"Unlim",H5S_UNLIMITED). Then, in the call to e.g. SWdefdatafield() we should use for the
'maxdimlist’ parameter the value "Unlim".

HDFS5 requires the user to use chunking in order to define extendible datasets. Chunking makes it
possible to extend datasets efficiently, without having to reorganize storage excessively. The
corresponding (new) calls are SWdefchunk() and GDdeftile(). These calls should be used before
the familiar old-library call to SWdefcomp() and GDdefcomp(), respectively. The latter set the
field compression for all subsequent field definitions.

In the input/output routines SWwriteattr() and GDwriteattr(), the data type of the fourth
parameter, number of values to store in attribute, is now such that it allows to store arbitrary big
number of elements in attribute. Also, the routines SWwritefield(), SWreadfield(),
GDuwrritefield(), and GDreadfield() allow for the parameters 'start’, 'stride’, and 'edge’ to use very
big numbers.

There are two new inquiry routines SWinqdatatype() and GDinqgdatatype() that, for a specified
field, retrieve explicit information about data type, including number of bytes allocated for each
element of the corresponding dataset.

The following ragged array routines have been added for the swath interface:
SWradefine() - sets up the ragged array within the swath under the "Data Fields" group
SWraopen() - opens up a specified ragged array
SWrawrite() - writes in the data to a specified ragged array
SWraread() - reads out the data from a specified ragged array

SWraclose() - closes the ragged array

3-5 162-WP-004-001

This page intentionally left blank.

3-6 162-WP-004-001

4. Swath Data

4.1 Introduction

The Swath concept for HDF-EOS is based on a typical satellite swath, where an instrument takes
a series of scans perpendicular to the ground track of the satellite as it moves along that ground
track. Figure 4-1 below shows this traditional view of a swath.

Satellite /

Along Track

Scan Lines

Figure 4-1. A Typical Satellite Swath: Scanning Instrument

Another type of data that the Swath is equally well suited to arises from a sensor that measures a
vertical profile, instead of scanning across the ground track. The resulting data resembles a
standard Swath tipped up on its edge. Figure 4-1 shows how such a Swath might look.

In fact, the two approaches shown in Figures 4-1 and 4-2 can be combined to manage a profiling
instrument that scans across the ground track. The result would be a three dimensional array of
measurements where two of the dimensions correspond to the standard scanning dimensions
(along the ground track and across the ground track), and the third dimension represents a height
above the Earth or a range from the sensor. The "horizontal” dimensions can be handled as
normal geographic dimensions, while the third dimension can be handled as a special "vertical"
dimension.

4-1 162-WP-004-001

[nstrumen

/
%
Instrument /] ///
%%
%4%%%'%
%%
411 en7
%%%% %4%%%%
47442 %%%%
4%%%%4% % %%%4%
%%%2%%%%%%
4%9%%%%%% % %Y%%
04497444335 % % %4%'%4
ROLAINLAINAARY,
s oy
= n%%1%%%%%%%%
NN%%%72%%%%%
0%%%%%%%%
0%%%%2%%'%
w%%%%%%
n%%%%2%
0%%%4
n%%%
_5/

>
g
oQ
s
B

Figure 4-2. A Swath Derived from a Profiling Instrument

A standard Swath is made up of four primary parts: data fields, geolocation fields, dimensions,
and dimension maps. An optional fifth part called an index can be added to support certain kinds
of access to Swath data. Each of the parts of a Swath is described in detail in the following
subsections.

4.1.1 Data Fields

Data fields are the main part of a Swath from a science perspective. Data fields usually contain
the raw data (often as counts) taken by the sensor or parameters derived from that data on a
value-for-value basis. All the other parts of the Swath exist to provide information about the data
fields or to support particular types of access to them. Data fields typically are two-dimensional
arrays, but can have as few as one dimension or as many as eight, in the current library
implementation. They can have any valid C data type.

4-2 162-WP-004-001

4.1.2 Geolocation Fields

Geolocation fields allow the Swath to be accurately tied to particular points on the Earth’s
surface. To do this, the Swath interface requires the presence of at least a time field (“Time”) or a
latitude/longitude field pair (“Latitude”? and “Longitude”). Geolocation fields must be either
one- or two-dimensional and can have any data type.

4.1.3 Dimensions

Dimensions define the axes of the data and geolocation fields by giving them names and sizes. In
using the library, dimensions must be defined before they can be used to describe data or
geolocation fields.

Every axis of every data or geolocation field, then, must have a dimension associated with it.
However, there is no requirement that they all be unique. In other words, different data and
geolocation fields may share the same named dimension. In fact, sharing dimension names
allows the Swath interface to make some assumptions about the data and geolocation fields
involved which can reduce the complexity of the file and simplify the program creating or
reading the file.

4.1.4 Dimension Maps

Dimension maps are the glue that holds the Swath together. They define the relationship between
data fields and geolocation fields by defining, one-by-one, the relationship of each dimension of
each geolocation field with the corresponding dimension in each data field. In cases where a data
field and a geolocation field share a named dimension, no explicit dimension map is needed. In
cases where a data field has more dimensions than the geolocation fields, the “extra” dimensions
are left unmapped.

In many cases, the size of a geolocation dimension will be different from the size of the
corresponding data dimension. To take care of such occurrences, there are two pieces of
information that must be supplied when defining a dimension map: the offset and the increment.
The offset tells how far along a data dimension you must travel to find the first point to have a
corresponding entry along the geolocation dimension. The increment tells how many points to
travel along the data dimension before the next point is found for which there is a corresponding
entry along the geolocation dimension. Figure 4-3 depicts a dimension map.

1 “Co-latitude” may be substituted for “Latitude.”

4-3 162-WP-004-001

Geolocation Dimension

Mapping

1[2

O 314l 2l el 7] S 2 Offset 1
\\\\\ Increment: 2

Ol 1121 31 4l51el /718l opdllh2Ll314L51d1 f1 819

Data Dimension

Figure 4-3. A “Normal” Dimension Map

The *“data skipping” method described above works quite well if there are fewer regularly spaced
geolocation points than data points along a particular pair of mapped dimensions of a Swath. It is
conceivable, however, that the reverse is true — that there are more regularly spaced geolocation
points than data points. In that event, both the offset and increment should be expressed as
negative values to indicate the reversed relationship. The result is shown in Figure 4-4. Note that

in the reversed relationship, the offset and increment are applied to the geolocation dimension
rather than the data dimension.

GeolocatiorDimension
112131415161 7/89101112131415146171819
}/}// Mapping
M tsiomn Offset:
Ol112]3/4]| 506|789 Increment -2

Data Dinension

Figure 4-4. A “Backwards” Dimension Map

4-4 162-WP-004-001

415 Index

The index was designed specifically for Landsat 7 data products. These products require
geolocation information that does not repeat at regular intervals throughout the Swath. The index
allows the Swath to be broken into unequal length scenes which can be individually geolocated.

For this version of the HDF-EOS library, there is no particular content required for the index. It
is quite likely that a later version of the library will impose content requirements on the index in
an effort to standardize its use.

4.2 Applicability

The Swath data model is most useful for satellite [or similar] data at a low level of processing.
The Swath model is best suited to data at EOS processing levels 1A, 1B, and 2.

4.3 The Swath Data Interface

The SW interface consists of routines for storing, retrieving, and manipulating data in swath data
sets.

4.3.1 SW API Routines

All C routine names in the swath data interface have the prefix “SW” and the equivalent
FORTRAN routine names are prefixed by “sw.” The SW routines are classified into the
following categories:

* Access routines initialize and terminate access to the SW interface and swath data sets
(including opening and closing files).

» Definition routines allow the user to set key features of a swath data set.

» Basic /O routines read and write data and metadata to a swath data set.

* Inquiry routines return information about data contained in a swath data set.
» Subset routines allow reading of data from a specified geographic region.

The SW function calls are listed in Table 4-1 and are described in detail in the Software
Reference Guide that accompanies this document. The page number column in the following
table refers to the Software Reference Guide.

4-5 162-WP-004-001

Table 4-1. Summary of the Swath Interface (1 of 2)

Routine Name Page
Category C FORTRAN Description Nos.
SWopen swopen Opens or creates HDF file in order to create, read, or | 2-44
write a swath
SWocreate swcreate Creates a swath within the file 2-6
Access Swattach swattach Attaches to an existing swath within the file 2-2
SWdetach swdetach Detaches from swath interface 2-24
SWoclose swclose Closes file 2-4
SWdefdim swdefdim Defines a new dimension within the swath 2-13
SWdefdimmap swdefmap Defines the mapping between the geolocation and 2-14
data dimensions
SWadefidxmap swdefimap Defines a non-regular mapping between the 2-18
geolocation and data dimension
Definition | SWdefgeofield swdefgfld Defines a new geolocation field within the swath 2-16
SWdefdatafield swdefdfld Defines a new data field within the swath 2-11
SWdefcomp swdefcomp Defines a field compression scheme 2-9
SWwritefield swwrfld Writes data to a swath field 2-65
SWreadfield swrdfld Reads data from a swath field. 2-54
Basic I/0 | SWwriteattr swwrattr Writes/updates attribute in a swath 2-63
SWreadattr swrdattr Reads attribute from a swath 2-53
SWhsetfillvalue swsetfill sets fill value for the specified field 2-60
SWaetfillvalue swagetfill Retrieves fill value for the specified field 2-31
SWingdims swingdims Retrieves information about dimensions defined in 2-37
swath
SWingmaps swingmaps Retrieves information about the geolocation relations | 2-40
defined
SWingidxmaps swingimaps Retrieves information about the indexed 2-39
geolocation/data mappings defined
SWinqggeofields swinqgflds Retrieves information about the geolocation fields 2-38
defined
SWingdatafields swinqdflds Retrieves information about the data fields defined 2-35
SWingdatatype swinqdtype Retrieves information about data type of a field 2-36
SWingattrs swingattrs Retrieves number and names of attributes defined 2-34
Inquiry SWhnentries swnentries Returns number of entries and descriptive string buffer | 2-43
size for a specified entity
SWdiminfo swdiminfo Retrieve size of specified dimension 2-25
SWmapinfo swmapinfo Retrieve offset and increment of specified geolocation | 2-42
mapping
SWidxmapinfo swimapinfo Retrieve offset and increment of specified geolocation | 2-33
mapping
SWattrinfo swattrinfo Returns information about swath attributes 2-3
SWrieldinfo swfldinfo Retrieve information about a specific geolocation or 2-29
data field
SWcompinfo swcompinfo Retrieve compression information about a field 2-5
SWingswath swingswath Retrieves number and names of swaths in file 2-41
Swregionindex swregidx Returns information about the swath region ID 2-56
SWupdateidxmap swupimap Update map index for a specified region 2-61
SWradefine swradefine Defines ragged array 2-48
Ragged SWraopen swraopen Opens ragged array 2-49
Arrays SWrawrite swrawrite Writes data to the ragged array 2-52
SWraread swraread Reads out data from the ragged array 2-50
SWraclose swraclose Closes the ragged array 2-47

4-6 162-WP-004-001

Table 4-1. Summary of the Swath Interface (2 of 2)

Routine Name Page

Category C FORTRAN Description Nos.
SWgeomapinfo swgmapinfo Retrieves type of dimension mapping when first | 2-32

dimension is geodim
SWdefboxregion | swdefboxreg Define region of interest by latitude/longitude 2-7

SWregioninfo swreginfo Returns information about defined region 2-58
SWextractregion | swextreg read a region of interest from a field 2-28
Subset | SWdeftimeperiod | swdeftmeper | Define a time period of interest 2-19
SWhperiodinfo swperinfo Retuns information about a defined time period 2-45
SWextractperiod | swextper Extract a defined time period 2-27
SWdefvrtregion swdefvrtreg Define a region of interest by vertical field 2-21
SWdupregion swdupreg Duplicate a region or time period 2-26

4.3.2 File Identifiers

As with all HDF-EOS interfaces, file identifiers in the SW interface are 32-bit values, each
uniquely identifying one open data file. They are not interchangeable with other file identifiers
created with other interfaces.

4.3.3 Swath ldentifiers

Before a swath data set is accessed, it is identified by a name which is assigned to it upon its
creation. The name is used to obtain a swath identifier. After a swath data set has been opened
for access, it is uniquely identified by its swath identifier.

4.4 Programming Model

The programming model for accessing a swath data set through the SW interface is as follows:

Open the file and initialize the SW interface by obtaining a file id from a file name.
Open OR create a swath data set by obtaining a swath id from a swath name.
Perform desired operations on the data set.

Close the swath data set by disposing of the swath id.

5. Terminate swath access to the file by disposing of the file id.

Hwbh e

To access a single swath data set that already exists in an HDF-EQS file, the calling program
must contain the following sequence of C calls:

file_id = SWopen(filename, access _mode);
sw_id = SWattach(file_id, swath_name);
<Optional operations>

status = SWdetach(sw_id);

status = SWclose(file_id);

4-7 162-WP-004-001

To access several files at the same time, a calling program must obtain a separate id for each file
to be opened. Similarly, to access more than one swath data set, a calling program must obtain a
separate swath id for each data set. For example, to open two data sets stored in two files, a
program would execute the following series of C function calls:

file_id_1 = SWopen(filename_1, access_mode);

sw_id_1 = SWattach(file_id_1, swath_name_1);

file_id 2 = SWopen(filename_2, access_mode);

sw_id 2 = SWattach(Ffile_id 2, swath _name_ 2);

<Optional operations>

status = SWdetach(sw_id 1);
status = SWclose(File_id_1);
status = SWdetach(sw_id_2);
status = SWclose(file_id _2);

Because each file and swath data set is assigned its own identifier, the order in which files and
data sets are accessed is very flexible. However, it is very important that the calling program
individually discard each identifier before terminating. Failure to do so can result in empty or,
even worse, invalid files being produced.

4-8 162-WP-004-001

5. Grid Data

5.1 Introduction

This section will describe the routines available for storing and retrieving HDF-EOS Grid Data.
A Grid data set is similar to a swath in that it contains a series of data fields of two or more
dimensions. The main difference between a Grid and a Swath is in the character of their
geolocation information.

As described in Section 4, swaths carry geolocation information as a series of individually
located points (tie points or ground control points). Grids, though, carry their geolocation in a
much more compact form. A grid merely contains a set of projection equations (or references to
them) along with their relevant parameters. Together, these relatively few pieces of information
define the location of all points in the grid. The equations and parameters can then be used to
compute the latitude and longitude for any point in the grid.

Ll
|

7 e
[T bl ol ol
RESES

[[
2|

s g 2

bl] 1 AT

N

2 Ivf;‘.l

] £
= '-.'\
N
BLE e
HE " amis
'H-‘.F'l_‘
ELE e [T
__5
A

ol
-

V]

Figure 5-1. A Data Field in a Mercator-projected Grid

In loose terms, each data field constitutes a map in a given standard projection. Although there
may be many independent Grids in a single HDF-EQOS file, within each Grid only one projection
may be chosen for application to all data fields. Figures 5-1 and 5-2 show how a single data field
may look in a Grid using two common projections.

There are three important features of a Grid data set: the data fields, the dimensions, and the
projection. Each of these is discussed in detail in the following subsections.

5-1 162-WP-004-001

i
|
A
]
]
]

-
]
[

|

A

Ly
-IIIIIII-I
-

Figure 5-2. A Data Field in an Interrupted Goode’s Homolosine-Projected Grid

5.1.1 Data Fields

The data fields are, of course, the most important part of the Grid. Data fields in a Grid data set
are rectilinear arrays of two or more dimensions. Most commonly, they are simply two-
dimensional rectangular arrays. Generally, each field contains data of similar scientific nature
which must share the same data type. The data fields are related to each other by common
geolocation. That is, a single set of geolocation information is used for all data fields within one
Grid data set.

5.1.2 Dimensions

Dimensions are used to relate data fields to each other and to the geolocation information. To be
interpreted properly, each data field must make use of the two predefined dimensions: “XDim”
and “YDim”. These two dimensions are defined when the grid is created and are used to refer to
the X and Y dimensions of the chosen projection (see 5.1.3 below). Although there is no
practical limit on the number of dimensions a data field in a Grid data set my have, it is not likely
that many fields will need more than three: the predefined dimensions “XDim” and “YDim” and
a third dimension for depth or height.

5.1.3 Projections

The projection is really the heart of the Grid. Without the use of a projection, the Grid would not
be substantially different from a Swath. The projection provides a convenient way to encode
geolocation information as a set of mathematical equations which are capable of transforming
Earth coordinates (latitude and longitude) to X-Y coordinates on a sheet of paper.

5-2 162-WP-004-001

The choice of a projection to be used for a Grid is a critical decision for a data product designer.
There is a large number of projections that have been used throughout history. In fact, some
projections date back to ancient Greece. For the purposes of this release of HDF-EQS, however,
only six families of projections are supported: Geographic, Interrupted Goode’s Homolosine,
Polar Stereographic, Universal Transverse Mercator, Space Oblique, and Lambert Azimuthal
Equal Area. These projections coincide with those supported by the SDP Toolkit for ECS
Release B.

The producer’s choice of a projection should be governed by knowledge of the specific
properties of each projection and a thorough understanding of the requirements of the data set’s
users. Two excellent resources for information on projections and their properties are the USGS
Professional Papers cited in Section 2.2 “Related Documents.”

This release of HDF-EOS assumes that the data producer will use to create the data the General
Coordinate Transformation Package (GCTP), a library of projection software available from the
U.S. Geological Survey. This manual will not attempt to explain the use of GCTP. Adequate
documentation accompanies the GCTP source code. For the purposes of this Grid interface, the
data are assumed to have already been projected. The Grid interface allows the data producer to
specify the exact GCTP parameters used to perform the projection and will provide for basic
subsetting of the data fields by latitude/longitude bounding box.

See section below for further details on the usage of the GCTP package.

5.2 Applicability

The Grid data model is intended for data processed at a high level. It is most applicable to data at
EOS processing levels 3 and 4.

5.3 The Grid Data Interface

The GD interface consists of routines for storing, retrieving, and manipulating data in grid data
sets.

5.3.1 GD API Routines

All C routine names in the grid data interface have the prefix “GD” and the equivalent
FORTRAN routine names are prefixed by “gd.” The GD routines are classified into the
following categories:

» Access routines initialize and terminate access to the GD interface and grid data sets
(including opening and closing files).

» Definition routines allow the user to set key features of a grid data set.
» Basic I/O routines read and write data and metadata to a grid data set.
* Inquiry routines return information about data contained in a grid data set.

» Subset routines allow reading of data from a specified geographic region.

5-3 162-WP-004-001

The GD function calls are listed in Table 6-1 and are described in detail in the Software
Reference Guide that accompanies this document. The page number column in the following
table refers to the Software Reference Guide.

Table 5-1. Summary of the Grid Interface (1 of 2)

Routine Name Page
Category C FORTRAN Description Nos.
GDopen gdopen Creates a new file or opens an existing one 2-108
GDcreate gdcreate Creates a new grid in the file 2-72
Access | GDattach gdattach Attaches to a grid 2-68
GDdetach gddetach Detaches from grid interface 2-92
GDclose gdclose Closes file 2-70
GDdeforigin gddeforigin Defines origin of grid 2-81
GDdefdim gddefdim Defines dimensions for a grid 2-78
GDdefproj gddefproj Defines projection of grid 2-83
Definition | GDdefpixreg gddefpixreg Defines pixel registration within grid cell 2-82
GDdeffield gddeffld Defines data fields to be stored in a grid 2-79
GDdefcomp gddefcomp Defines a field compression scheme 2-76
GDwritefield gdwrfld Writes data to a grid field. 2-121
GDreadfield gdrdfld Reads data from a grid field 2-114
Basic I/O | GDwriteattr gdwrattr Writes/updates attribute in a grid. 2-119
GDreadattr gdrdattr Reads attribute from a grid 2-113
GDsetfillvalue gdsetfill sets fill value for the specified field 2-118
GDgetfillvalue gdgetfill Retrieves fill value for the specified field 2-98
GDingdims gdingdims Retrieves information about dimensions defined | 2-104
in grid
GDindfields gdinqdflds Retrieves information about the data fields 2-105
defined in grid
GDinqattrs gdingattrs Retrieves number and names of attributes 2-102
defined
GDnentries gdnentries Returns number of entries and descriptive string | 2-107
buffer size for a specified entity
GDgridinfo gdgridinfo Returns dimensions of grid and X-Y coordinates | 2-101
of corners
Inquiry | GDprojinfo gdprojinfo Returns all GCTP projection information 2-112
GDdiminfo gddiminfo Retrieves size of specified dimension. 2-93
GDcompinfo gdcompinfo Retrieve compression information about a field 2-71
GDfieldinfo gdfldinfo Retrieves information about a specific 2-96
geolocation or data field in the grid
GDingdatatype gdingdtype Retrieves information about data type of a field 2-103
GDinqgrid gdinqggrid Retrieves number and names of grids in file 2-106
GDattrinfo gdattrinfo Returns information about grid attributes 2-69
GDorigininfo gdorginfo Return information about grid origin 2-110
GDpixreginfo gdpreginfo Return pixel registration information for given 2-111
grid
GDdefboxregion | gddefboxreg Define region of interest by latitude/longitude 2-75
GDregioninfo gdreginfo Returns information about a defined region 2-116

5-4

162-WP-004-001

Table 5-1. Summary of the Grid Interface (2 of 2)

Routine Name Page

Category C FORTRAN Description Nos.
GDextractregion [gdextrreg read a region of interest from a field 2-95
Subset | GDdeftimeperiod | gddeftmeper Define a time period of interest 2-87
GDdefvriregion | gddefvrtreg Define a region of interest by vertical field 2-89
GDgetpixels gdgetpix get row/columns for lon/lat pairs 2-99
GDdupregion gddupreg Duplicate a region or time period 2-94
Tiling GDdeftile gddeftle Define a tiling scheme 2-85

5.3.2 File Identifiers

As with all HDF-EOS interfaces, file identifiers in the GD interface are 32-bit values, each
uniquely identifying one open data file. They are not interchangeable with other file identifiers
created with other interfaces.

5.3.3 Grid Identifiers

Before a grid data set is accessed, it is identified by a name which is assigned to it upon its
creation. The name is used to obtain a grid identifier. After a grid data set has been opened for
access, it is uniquely identified by its grid identifier.

5.4 Programming Model

The programming model for accessing a grid data set through the GD interface is as follows:
Open the file and initialize the GD interface by obtaining a file id from a file name.

Open OR create a grid data set by obtaining a grid id from a grid name.

Perform desired operations on the data set.

A w NP

Close the grid data set by disposing of the grid id.
5. Terminate grid access to the file by disposing of the file id.
To access a single grid data set that already exists in an HDF-EOS file, the calling program must
contain the following sequence of C calls:
file_id = GDopen(filename, access mode);
gd_id = GDattach(file_id, grid_name);
<Optional operations>

status = GDdetach(gd_id);
status = GDclose(file_id);

To access several files at the same time, a calling program must obtain a separate id for each file
to be opened. Similarly, to access more than one grid data set, a calling program must obtain a

5-5 162-WP-004-001

separate grid id for each data set. For example, to open two data sets stored in two files, a
program would execute the following series of C function calls:
file_id_1 = GDopen(filename_1, access_mode);
gd_id 1 = GDattach(Ffile_id_1, grid _name 1);
file_id_2 = GDopen(filename_2, access_mode);
gd_id_2 = GDattach(file_id_2, grid_name_ 2);
<Optional operations>

status = GDdetach(gd_id_1);

status = GDclose(file_id_1);

GDdetach(gd_id 2);

GDclose(file_id _2);

status

status

Because each file and grid data set is assigned its own identifier, the order in which files and data
sets are accessed is very flexible. However, it is very important that the calling program
individually discard each identifier before terminating. Failure to do so can result in empty or,
even worse, invalid files being produced.

5.5 GCTP Usage

The HDF-EOS Grid API uses the U.S. Geological Survey General Cartographic Transformation
Package (GCTP) to define and subset grid structures. This section described codes used by the
package.

5.5.1 GCTP Projection Codes

The following GCTP projection codes are used in the grid API described in Section 7 below:

GCTP_GEO 0) Geographic

GCTP_UTM (@D Universal Transverse Mercator
GCTP_LAMCC (€)) Lambert Conformal Conic
GCTP_PS (6) Polar Stereographic
GCTP_POLYC a Polyconic

GCTP_TM 9 Transverse Mercator
GCTP_LAMAZ (11) Lambert Azimuthal Equal Area
GCTP_HOM (20) Hotine Oblique Mercator
GCTP_SOM (22) Space Oblique Mercator
GCTP_GOOD (24) Interrupted Goode Homolosine
GCTP_ISINUS (99) Intergerized Sinusoidal Projection*

* The Intergerized Sinusoidal Projection is not part of the original GCTP package. It has been
added by ECS. See Level-3 SeaWiFS Data Products. Spatial and Temporal Binning Algorithms.,
Additional references are provided in Section 2.

Note that other projections supported by GCTP will be adapted for HDF-EOS Version 3 new
user requirements are surfaced. For further details on the GCTP projection package, please refer

5-6 162-WP-004-001

to Section 6.3.4 and Appendix G of the SDP Toolkit Users Guide for the ECS Project, June
1998, (333-CD-500-001)

5.5.2 UTM Zone Codes

The Universal Transverse Mercator (UTM) Coordinate System uses zone codes instead of
specific projection parameters. The table that follows lists UTM zone codes as used by GCTP
Projection Transformation Package. C.M. is Central Meridian

Zone C.M. Range Zone C.M. Range
01 177W 180W-174W 31 O03E OOOE-006E
02 171w 174W-168W 32 O09E 006E-012E
03 165w 168W-162W 33 015E 012E-018E
04 159w 162W-156W 34 021E 018E-024E
05 153w 156W-150wW 35 027E 024E-030E
06 147w 150w-144w 36 033E 030E-036E
07 141w 144W-138W 37 039E 036E-042E
08 135w 138W-132wW 38 045E 042E-048E
09 129w 132w-126W 39 O51E 048E-054E
10 123w 126W-120W 40 O57E 054E-060E
11 117w 120wW-114w 41 063E 060E-066E
12 111w 114wW-108wW 42 069E 066E-072E
13 105w 108w-102w 43 075E 072E-078E
14 099w 102W-096W 44 081E 078E-084E
15 093w 096W-090W 45 087E 084E-090E
16 087W 090W-084W 46 093E 090E-096E
17 081w 084W-078wW 47 099E 096E-102E
18 075w 078W-072W 48 105E 102E-108E
19 069w 072W-066W 49 111E 108E-114E
20 063W 066W-060W 50 117E 114E-120E
21 057w 060W-054W 51 123E 120E-126E
22 051w 054W-048wW 52 129E 126E-132E
23 045w 048wW-042w 53 135E 132E-138E
24 039w 042W-036W 54 141E 138E-144E
25 033w 036W-030W 55 147E 144E-150E

5-7 162-WP-004-001

26 027w

27 021w
28 015w
29 oo9w
30 003w

030wW-024Ww
024W-018W
018w-012w
012w-006W
006W-000E

5.5.3 GCTP Spheroid Codes

Clarke 1866 (default)

Clarke 1880

Bessel
International 1967
International 1909
WGS 72

Everest

WGS 66

GRS 1980

Alry

Modified Airy
Modified Everest
WGS 84

Southeast Asia

©
@
@
€))
©)
®
)
@
®)
®
(10)
(11
a2
(13)

Austrailian National (14)

Krassovsky
Hough
Mercury 1960

Modified Mercury 1968

(€5
(16)

an
(18)

Sphere of Radius 6370997m(19)

56
57
58
59
60

153E
159E
165E
171E
177E

150E-156E
156E-162E
162E-168E
168E-174E
174E-180W

162-WP-004-001

5.5.4 Projection Parameters

Table 5-2. Projection Transformation Package Projection Parameters

Array

Element
Code & Projection Id 1 2 3 4 5 6 7 8
0 Geographic
1UTM Lon/Z Lat/Z
4 Lambert Conformal | SMajor | SMinor | STDPR1 | STDPR2 | CentMer | OriginLat | FE | FN
C
6 Polar Stereographic | SMajor | SMinor LongPol | TrueScale | FE | FN
7 Polyconic SMajor | SMinor CentMer | OriginLat | FE | FN
9 Transverse SMajor | SMinor | Factor CentMer | OriginLat | FE | FN
Mercator
11 Lambert Azimuthal | Sphere CentLon | CenterLat | FE | FN
20 Hotin Oblique SMajor | SMinor | Factor OriginLat | FE | FN
Merc A
20 Hotin Oblique SMajor | SMinor | Factor AziAng AzmthPt | OriginLat | FE | FN
Merc B
22 Space Oblique SMajor | SMinor IncAng AsclLong FE | FN
Merc A
22 Space Oblique SMajor | SMinor | Satnum Path FE | FN
Merc B
24 Interrupted Goode | Sphere
99 Integerized Sphere CentMer FE | FN
Sinusoidal

5-9 162-WP-004-001

Table 5-3. Projection Transformation Package Projection Parameters Elements

Array Element

Code & Projection Id

10

11

12

13

0 Geographic

1UTM

4 Lambert Conformal C

6 Polar Stereographic

7 Polyconic

9 Transverse Mercator

11 Lambert Azimuthal

20 Hotin Oblique Merc A

Longl

Latl

Long2

Lat2

Zero

20 Hotin Oblique Merc B

one

22 Space Oblique Merc A

PSRev

Srat

PFlag

Zero

22 Space Oblique Merc B

one

24 Interrupted Goode

99 Integerized Sinusoidal

NZone

RFlag

Longitude of any point in the UTM zone or zero. If zero, a zone code must be

Latitude of any point in the UTM zone or zero. If zero, a zone code must be

Semi-major axis of ellipsoid. If zero, Clarke 1866 in meters is assumed.

Eccentricity squared of the ellipsoid if less than zero, if zero, a spherical form is
assumed, or if greater than zero, the semi-minor axis of ellipsoid.

Radius of reference sphere. If zero, 6370997 meters is used.

False easting in the same units as the semi-major axis

False northing in the same units as the semi-major axis

Where,
Lon/Zz
specified.
Lat/Z
specified.
Smajor
Sminor
Sphere
STDPR1 Latitude of the first standard parallel
STDPR2 Latitude of the second standard parallel
CentMer Longitude of the central meridian
OriginLat Latitude of the projection origin
FE
FN
TrueScale Latitude of true scale

5-10 162-WP-004-001

LongPol

Factor

CentLon
CenterLat
Longl
Long?2
Latl
Lat2
AziAng
AzmthPt

IncAng

AsclLong
PSRev
SRat

PFlag
Satnum
Path

Nzone
Rflag

Notes:

Longitude down below pole of map

Scale factor at central meridian (Transverse Mercator) or center of projection
(Hotine Oblique Mercator)

Longitude of center of projection

Latitude of center of projection

Longitude of first point on center line (Hotine Oblique Mercator, format A)
Longitude of second point on center line (Hotine Oblique Mercator, frmt A)
Latitude of first point on center line (Hotine Oblique Mercator, format A)
Latitude of second point on center line (Hotine Oblique Mercator, format A)
Azimuth angle east of north of center line (Hotine Oblique Mercator, frmt B)

Longitude of point on central meridian where azimuth occurs (Hotine Oblique
Mercator, format B)

Inclination of orbit at ascending node, counter-clockwise from equator (SOM,
format A)

Longitude of ascending orbit at equator (SOM, format A)
Period of satellite revolution in minutes (SOM, format A)

Satellite ratio to specify the start and end point of x,y values on earth surface (SOM,
format A -- for Landsat use 0.5201613)

End of path flag for Landsat: 0 = start of path, 1 = end of path (SOM, frmt A)
Landsat Satellite Number (SOM, format B)

Landsat Path Number (Use WRS-1 for Landsat 1, 2 and 3 and WRS-2 for Landsat 4
and 5.) (SOM, format B)

Number of equally spaced latitudinal zones (rows); must be two or larger and even

Right justify columns flag is used to indicate what to do in zones with an odd
number of columns. If it has a value of 0 or 1, it indicates the extra column is on
the right (zero) left (one) of the projection Y-axis. If the flag is set to 2 (two), the
number of columns are calculated so there are always an even number of columns
in each zone.

e Array elements 14 and 15 are set to zero.

e All array elements with blank fields are set to zero.

All angles (latitudes, longitudes, azimuths, etc.) are entered in packed degrees/ minutes/ seconds
(DDDMMMSSS.SS) format.

5-11 162-WP-004-001

The following notes apply to the Space Oblique Mercator A projection:

A portion of Landsat rows 1 and 2 may also be seen as parts of rows 246 or 247. To
place these locations at rows 246 or 247, set the end of path flag (parameter 11) to 1--end
of path. This flag defaults to zero.

When Landsat-1,2,3 orbits are being used, use the following values for the specified
parameters:

- Parameter 4 099005031.2

- Parameter 5 128.87 degrees - (360/251 * path number) in packed DMS format
- Parameter 9 103.2669323

- Parameter 10 0.5201613

When Landsat-4,5 orbits are being used, use the following values for the specified
parameters:

- Parameter 4 098012000.0

- Parameter 5 129.30 degrees - (360/233 * path number) in packed DMS format
- Parameter 9 98.884119

- Parameter 10 0.5201613

5-12 162-WP-004-001

6. Examples of HDF-EOS Library Usage

This Section contains code examples of usage of the HDF-EOS Library specified in Volume 2 of
this document. These examples assume that the user is not using the SDP Toolkit and is writing
applications for use outside of ECS. Examples of SDP Toolkit usage in conjunction with
HDF-EOS is presented in Section 7.

Note: The examples in this document are code fragments, designed to show users how to create
HDF-EOS data structures. Some of the examples in this version have not yet undergone
thorough inspections and checks for ECS software standard compliance.

6.1 Swath Examples

This section contains several examples of the use of the Swath interface from both C and
FORTRAN programs. First, there are simple examples in C and FORTRAN which demonstrate
the use of most of the functions in the Swath interface. The section concludes with a real world
example from the ECS “VO0 Data Migration” effort, written in C.

6.1.1 Creating a Simple Swath

The following C and FORTRAN programs each create, define, and write a simple Swath data set
to an HDF-EQS file using the HDF-EOS Swath interface.

6.1.1.1 A C Example of a Simple Swath Creation

The following C source code is part of a test driver that demonstrates the functioning of the
Swath interface routines.

Note: This is a test example; it is presented for the purpose of providing a guide for users of
HDF-EOS.

/* ___ */
/* Simple driver to create and write data */
/* to the HDF-EOS swath file */
2 */

#include "HdfEosDef.h"

main ()

{
herr t status = -1;
int32 t indexl = 0;
int32 t index2 = 0;
hid t swfid = -1;
hid t SWid simple = -1;

6-1 162-WP-004-001

hssize t start[2] = {10, 10};

hssize t tstart[2] = {0, 0};
hssize t geostart([2] = {0, 0};
hsize t stridel[2] = {1, 1};
hsize t edge[2] = {90, 30};
hsize t tedge[2] = {100, 40};

hsize t geostride[2] = {1,1};

hsize t geocount[2] = {50,40};

float32 temp[100]1[40];

float32 cond[100][407;

float32 c¢cnt = =-799.;

float lat[50] [40];

float latcent = 39.8;

float lon([50][40];

float loncnt = 78.0;

/* __
/* populate data arrays for the "Temperature"

/* and "Conduction" data fields

2 S ———

while (indexl < 100) {
while (index2 < 40) {
temp [index1] [index2]
cond[indexl] [index?2]
index2++;
cnt = cnt + .1;

cnt;
cnt + .1;

}
indexl++;
index2 = 0;

2 S —
/* populate data arrays for the "Latitude" and

/* "Longitude" geolocation data fields

2 S ———
indexl = 0;

index2 = 0;

while (indexl < 50) {

while (index2 < 40) {
lat[indexl] [index2] = latcnt;
lon[indexl] [index2] = loncnt;
loncnt = loncnt - .1;
index2++;

}

latcnt = latcent - .17

loncnt = 78.0;

indexl1++;

index2 = 0;

6-2

*/
*/
*/

162-WP-004-001

/* ___ */

/* Open HDF-EOS file "Swath.h5" 5(if the named */
/* file does not exist, it will be automatically */
/* created with the read/write access mode */
/2 *)
swfid = SWopen ("Swath.h5", H5F ACC TRUNC) ;

2 *)
/* Create swath "Simple" within HDF-EOS file */
/* "Swath.h5" */
2 *)
SWid simple = SWcreate(swfid, "Simple");

2 *)
/* Define dimensions */
/* ___ */

status = SWdefdim(SWid simple, "DataTrack", 100);
status = SWdefdim(SWid simple, "DataXtrack", 40);
status = SWdefdim(SWid simple, "GeoTrack", 50);

status = SWdefdim(SWid simple, "GeoXtrack", 40);

/* ___ */
/* Define data fields */
2 ——— x)

status = SWdefdatafield(SWid simple, "Temperature",
"DataTrack, DataXtrack",
"DataTrack, DataXtrack", H5T4NATIVE4FLOAT, HDFE AUTOMERGE) ;
status = SWdefdatafield(SWid simple, "Conduction", "DataTrack,DataXtrack",
"DataTrack, DataXtrack", H5T_NATIVE_FLOAT, HDFE_NOMERGE);

2 * /
/* Define geolocation fields */
/* ___ */

status = SWdefgeofield(SWid simple, "Latitude", "GeoTrack,GeoXtrack",
NULL,
H5T NATIVE FLOAT,HDFE AUTOMERGE) ;
status = SWdefgeofield(SWid simple, "Longitude", "GeoTrack,GeoXtrack",
"GeoTrack,GeoXtrack", H5T NATIVE FLOAT,HDFE AUTOMERGE) ;

/* ___ */
/* Define mapping between different dimensions */
JF */

status = SWdefdimmap (SWid simple, "GeoTrack", "DataTrack", 0, 2);
status = SWdefdimmap (SWid simple, "GeoXtrack", "DataXtrack", 0, 1);

/* ___ */
/* Detach from the swath */
2 S —— */
status = SWdetach (SWid simple);

/* ___ */
/* Re-attach to the sawth */
2 S — */
SWid simple = SWattach(swfid, "Simple");

2 */
/* Write the temperature data to the swath */

6-3 162-WP-004-001

/* ___ */

status = SWwritefield(SWid simple, "Temperature", tstart, stride, tedge,

temp) ;

2 S — */

/* Write the conduction data to the swath */

2 S —— */

status = SWwritefield(SWid simple, "Conduction", start, stride, edge,
cond) ;

2 S — */

/* Write the Latitude data to the swath */

2 S —— */

status = SWwritefield(SWid simple, "Latitude", geostart, geostride,

geocount, lat);

2 *)
/* Write the Longitude data to the swath */
2 */

status = SWwritefield(SWid simple, "Longitude", geostart, geostride,

geocount, lon);

}

2 S — * /
/* Close the HDF-EOS file "Swath.h5" */
2 * /
status = SWclose(swfid) ;

6.1.1.2 FORTRAN Example of a Simple Swath Creation

Simple driver to create and write data
to the HDF-EOS swath file

implicit none
integer status
integer i

integer indexl
integer index?2
integer swfid
integer SWid simple
integer*4 start (2)
integer*4 tstart (2)
integer*4 geostart (2)
integer*4 stride (2)
integer*4 tstride (2)

integer*4 edge (2)
integer*4 tedge (2)

integer*4 geostride (2)
integer*4 geocount (2)
real*8 TimeData (5)

6-4 162-WP-004-001

real*4 temp (100, 40)

real*4 cond (100, 40)

real*4 cnt

real*4 lat (50,40)

real*4 latcnt

real*4 lon(50,40)

real*4 loncnt

integer swclose, swopen, swcreate, swdefdim

integer swdefdfld, swdefgfld, swdefmap, swattach, swdetach
integer swwrfld

integer HS5F ACC_TRUNC

parameter (H5F ACC TRUNC = 2)
integer HDFE AUTOMERGE

parameter (HDFE AUTOMERGE = 1)
integer HDFE NOMERGE

parameter (HDFE NOMERGE = 0)
integer H5T NATIVE INT

parameter (HS5T NATIVE INT = 0)
integer H5T7NATIVE7FLOAT
parameter (H5T_NATIVE_FLOAT = 1)
integer H5T_NATIVE_DOUBLE
parameter (HS5T NATIVE DOUBLE = 2)

status = -1
swfid = -1
SWid simple = -1
start (1) =10
start (2) =10
tstart (1) =0
tstart (2) =0
geostart(l) =0
geostart(2) =0
stride (1) =1
stride (2) =1
edge (1) = 90
edge (2) = 30
tedge (1) = 100
tedge (2) = 40
geostride(l) = 1
geostride(2) =1
geocount (1) = 50
geocount (2) = 40
cnt = -799.
latcnt = 39.8
loncnt = 78.0

populate data arrays for the "Temperature"
and "Conduction" data fields
do 20 indexl =1, 100
do 10 index2 =1, 40

temp (index1l, index2) = cnt
cond (indexl, index2) = cnt + .1
cnt = cnt + .1

6-5 162-WP-004-001

10 continue
20 continue

populate data arrays for the "Latitude" and
"Longitude" geolocation data fields

do 40 indexl =1, 50
do 30 index2 =1, 40
lat (index1l, index2) = latcnt
lon (index1l, index2) = loncnt
loncnt = loncnt - .1
30 continue
latcnt = latcnt - .1
loncnt 78.0
40 continue

Open HDF-EOS file "Swath.hb"™ (if the named
file does not exist, it will be automatically
created with the read/write access mode

Create swath "Simple" within HDF-EOS file
"Swath.hb"

status = SWdefdim(SWid simple, "DataTrack", 100)
status = SWdefdim(SWid simple, "DataXtrack", 40)
status = SWdefdim(SWid simple, "GeoTrack", 50)

status = SWdefdim(SWid simple, "GeoXtrack", 40)

status = SWdefdfld(SWid simple, "Temperature",

> "DataTrack, DataXtrack",

> ", H5T_NATIVE_FLOAT, HDFE_AUTOMERGE)
status = SWdefdfld(SWid simple, "Conduction",

> "DataTrack, DataXtrack",

> ", H5T_NATIVE_FLOAT, HDFE_NOMERGE)

status = SWdefgfld(SWid simple, "Latitude",

> "GeoTrack, GeoXtrack", "", HS5T NATIVE FLOAT,HDFE AUTOMERGE)
status = SWdefgfld(SWid simple, "Longitude",
> "GeoTrack, GeoXtrack","", H5T NATIVE FLOAT

6-6 162-WP-004-001

> , HDFE_AUTOMERGE)
Status = SWdefgfld(SWid simple,"Time", "GeoTrack","",
> H5T7NAT IVE DOUBLE, HDFE AUTOMERGE)

status = SWdefmap (SWid simple, "GeoTrack", "DataTrack", 0, 2)
status = SWdefmap (SWid simple, "GeoXtrack", "DataXtrack", 0, 1)
Detach from the swath
status = SWdetach (SWid simple)
Re-attach to the sawth
SWid simple = SWattach(swfid, "Simple")
Write the temperature data to the swath
status = SWwrfld(SWid simple, "Temperature", tstart, stride,
> tedge, temp)
Write the conduction data to the swath
status = SWwrfld(SWid simple, "Conduction", start, stride,
> edge, cond)
Write the Latitude data to the swath
status = SWwrfld(SWid simple, "Latitude", geostart, geostride
> , geocount, lat)
Write the Longitude data to the swath
status = SWwrfld(SWid simple, "Longitude", geostart,
> geostride, geocount, lon)
————————— Writing Time in a swath ——————-
do 120 i=1,5
TimeData(i) = 5.e7 + 5.e6 *i
120 continue
tstart(1) 0
tstride (1) =1
tedge(1) 5
Status = SWwrfld(SWid simple,"Time", tstart, tstride, tedge,
> TimeData)
6-7 162-WP-004-001

c Close the HDF-EOS file "Swath.h5"
status = SWclose (swfid)

stop
end

6.1.2 Performing Subsetting for a Swath

The following C and FORTRAN programs each demonstrate how to perform subsetting for a
Swath object in an HDF-EQS file using the HDF-EOS Swath interface.

6.1.2.1 The C Examples of a Subsetting for a Swath

Example 1 :

*/

/* Simple driver to define time period for a swath, and then extract

/ / the entries of a specified data field within the defined time period.
/ / NOTE: Before running this driver make sure that the

file, Swathc Test.h5,*/

/* produced by a test driver testswath he3.c exists.

*/

2 S ——
*/

#include "HdfEosDef.h"

main (int argc, char *argvl([])

{

herr t status;
hid t swfidc test;
hid t SWwid co;

int32 t i, 3J, k;
int32 t periodID;
int32 t rank, size;

hsize t dims([8];
H5T class t *numtype = (HS5T class_ t *)NULL;

float6d4d “*timebuf;
float64 starttime, stoptime;

6-8 162-WP-004-001

/*
/*

/*
/*
/*

swfidc test = SWopen ("Swathc Test.h5", H5F ACC RDONLY) ;
printf ("\t\tSwath file ID returned by SWopen %d\n",swfidc test);

SWid co = SWattach(swfidc test, "Swathco");
printf ("\t\tSwath ID returned by SWattach on swath Swathco %d\n",SWid co);

starttime = 46353450.0;
stoptime = 46500000.0;

periodID = SWdeftimeperiod(SWid co,starttime,stoptime, HDFE MIDPOINT) ;
printf ("\t\tPeriod id returned by SWdeftimeperiod %d\n",periodID) ;

___ * /
Retrieve basic information about data fields "BandC" */
and "Time" */
___ * /
numtype = (H5T class t *)calloc(l, sizeof (H5T class t));
status = SWperiodinfo (SWid co,periodID, "BandC",numtype, &rank,dims, &size);

printf ("\t\tStatus returned by SWperiodinfo %d\n",status);
printf ("\t\tNumber type of region %d, Rank of region

%d\n", *numtype, rank);

printf ("\t\tDimensions of region %lu %lu \n", (unsigned

long)dims[0], (unsigned long)dims[1]);

printf ("\t\tSize of region in bytes %d\n", size);

status = SWperiodinfo (SWid co,periodID, "Time", numtype, &rank,dims, &size) ;
printf ("\t\tStatus returned by SWperiodinfo %d\n",status);
printf ("\t\tNumber type of region %d, Rank of region

%d\n", *numtype, rank) ;

printf ("\t\tDimensions of region %lu %lu \n", (unsigned

long)dims[0], (unsigned long)dims[1l]);

printf ("\t\tSize of region in bytes %d\n",size);

free (numtype) ;

timebuf = (float64 *)malloc(size);
status = SWextractperiod(SWid co,periodID, "Time",HDFE INTERNAL, timebuf) ;
printf ("\t\tStatus returned by SWextractperiod %d\n",status);
k = 0;
for(i = 0; i < 10; i++)
{
for(j = 0; jJ < 5; Jj++)
{
printf ("\t\t%d %d %$f\n", i, j, timebuf[k]);
k++;

}

free (timebuf) ;

6-9 162-WP-004-001

status = SWdetach (SWid co);
printf ("\t\tStatus returned by SWdetach %d\n",status);

status=SWclose (swfidc test);

Example 2 :
2 S — */
/* Simple driver demonstrating how to perform subsetting along the "Track" */
/* dimension and along any other dimension defined 1in a specified swath. */
/* NOTE: *)
/* make sure that the HDF-EOS file Swathc Test.h5 produced by the test */
/* driver testswath he3.c exists. */
i e * /)
#include "HdfEosDef.h"
main ()
{

herr t status;

hid t swfidc test, SWid simple, SWid oned, SWid index;

int32 t i, 3, k, rank, size, regionlID;

hsize t dims[8];

H5T class_t “*numtype = (H5T class t *)NULL;

float32 *datbuf;

floato4 *timebuf;

floato4 corlon[2], corlat[2], range[2];
2
*/

/* Open swath file "Swathc Test.h5" and attach to the named swath
objects.*/
2 2 E——
*/

swfidc test = SWopen ("Swathc Test.h5", H5F ACC RDONLY) ;

printf ("\t\tSwath file ID returned by SWopen %d\n",swfidc test);

SWid oned = SWattach(swfidc_ test, "OnedGeo");
printf ("\t\tSwath ID returned by SWattach on swath \"OnedGeo\"
$d\n", SWid oned);

SWid simple = SWattach(swfidc test, "Simple");
printf ("\t\tSwath ID returned by SWattach on swath \"Simple\"
$d\n", SWid simple);

SWid index = SWattach (swfidc test, "Index");

printf ("\t\tSwath ID returned by SWattach on swath \"Index\"
$d\n", SWid index);

6-10 162-WP-004-001

*/
/* 1.1 Perform subsetting on the named field

*/

*/
range[0] = 46353450.0;
range[1] 46500000.0;

regionID = SWdefvrtregion (SWid oned, HDFE NOPREVSUB, "Time", range) ;
printf ("\t\tRegion id returned by SWdefvrtregion %d\n",regionID);

2
*/
/* 1.2 Retrieve information about the subsetted region
*/
/* for the named data field
*/
2
*/
numtype = (H5T class t *)calloc(l, sizeof (H5T class t));
status = SWregioninfo (SWid oned,

regionID, "Time", numtype, &rank, dims, &size) ;
printf ("\t\tStatus returned by SWregioninfo %d\n", status);
printf ("\t\tNumber type of field %d\n", *numtype) ;
printf ("\t\tRank of field %d\n", rank);
printf ("\t\tDimension of subsetted region: %lu \n", (unsigned
long)dims[0]) ;
printf ("\t\tSize in bytes of region %d\n",size);

free (numtype) ;

/* __
*/
/* 1.3 Read data into the data buffer from the subsetted region
*/
2
*/

timebuf = (float64 *)malloc(size);

status = SWextractregion (SWid oned, regionlID,

"Time", HDFE INTERNAL, timebuf) ;
printf ("\t\tStatus returned by SWextractregion %d\n", status);
for(k = 0; k < 5; k++)
{
printf ("\t\tsd %f \n", k, timebuf[k]);
}

free (timebuf) ;

status = SWdetach (SWid oned);
printf ("\t\tStatus returned by SWdetach %d\n",status);

6-11 162-WP-004-001

/* 2.1 Define a longitude-latitude box region for the named swath

*/

2 S —
*/

corlon[0] = 75.5;

corlat[0] = 35.5;

corlon([l] = 77.5;

corlat[l] = 36.5;

regionID = SWdefboxregion (SWid simple,corlon,corlat, HDFE MIDPOINT) ;
printf ("\t\tSwath region ID returned by SWdefboxregion %d\n", regionlID);

2
*/
/* 2.2 Retrieve information about the subsetted region
*/
/* for the named data field
*/
2
*/
numtype = (H5T class t *)calloc(l, sizeof (H5T class t));
status = SWregioninfo (SWid simple,

regionID, "Temperature", numtype, &rank,dims, &size) ;

printf ("\t\tStatus returned by SWregioninfo %d\n", status);

printf ("\t\tNumber type of field %d\n", *numtype) ;

printf ("\t\tRank of field %d\n", rank);

printf ("\t\tDimensions of subsetted region: %$lu , %$lu \n", (unsigned
long)dims[0], (unsigned long)dims([1]);

printf ("\t\tSize in bytes of region %d\n",size);

free (numtype) ;

/* __
*/
/* 2.3 Read data into the data buffer from the subsetted region
*/
2
*/

datbuf = (float32 *)malloc(size);

status = SWextractregion (SWid simple, regionlID,

"Temperature", HDFE INTERNAL,datbuf) ;
printf ("\t\tStatus returned by SWextractregion %d\n", status);
?oz(oi =0; 1 < 10; i++)
{ for(j = 0; 3§ < 5; J++)
{ printf ("\t\t%d %4 %$f\n", i, j, datbuf[k]);
k++;

}

free (datbuf) ;

6-12 162-WP-004-001

/* 2.4 Retrieve information about the subsetted region

*/
/* for the named data field
*/
2 S —————————
*/
numtype = (H5T class t *)calloc(l, sizeof (H5T class t));
status = SWregioninfo (SWid simple, regionID,"Latitude", numtype, &rank,

dims, &size);

printf ("\t\tStatus returned by SWregioninfo %d\n", status);

printf ("\t\tNumber type of field %d\n", *numtype);

printf ("\t\tRank of field %d\n", rank);

printf ("\t\tDimensions of subsetted region: %lu , %lu \n", (unsigned
long)dims[0], (unsigned long)dims[1l]);

printf ("\t\tSize in bytes of region %d\n", size);

free (numtype) ;

*/
/* 2.5 Read data into the data buffer from the subsetted region
*/
2 S E————
*/
datbuf = (float32 *)malloc(size);
status = SWextractregion (SWid simple, regionID, "Latitude", HDFE INTERNAL,
datbuf) ;
printf ("\t\tStatus returned by SWextractregion %d\n", status);
k = 0;
for(i = 0; i < 10; i++)
{
for(j = 0; 3 < 5; j++)
{
printf ("\t\t%d &%d %f\n", i, J, datbuflk]);
k++;

}

free (datbuf) ;

status = SWdetach (SWid simple);
printf ("\t\tValue returned by SWdetach %d\n",status);

2 S —————————
*/
/* 3.1 Define a longitude-latitude box region for the named swath
*/
2 S —
*/

corlat[0] = 37.0;

corlat[l] = 38.5;

corlon([0] = 76.0;

corlon[l] = 77.5;

6-13 162-WP-004-001

regionID = SWdefboxregion (SWid index, corlon, corlat, HDFE MIDPOINT) ;
printf ("\t\tRegion ID returned by SWdefboxregion %d\n", regionID);

/* 3.2 Retrieve information about the subsetted region

/* for the named data field

numtype (HS5T class_t *)calloc(l, sizeof (H5T class t));

status = SWregioninfo (SWid index,regionID, "Fakedata", numtype, &rank,
dims, &size);

printf ("\t\tStatus returned by SWregioninfo %d\n", status);

printf ("\t\tNumber type of field %d\n", *numtype);

printf ("\t\tRank of field %d\n", rank);

printf ("\t\tDimensions of subsetted region: %lu , %$lu\n", (unsigned
long)dims[0], (unsigned long)dims[1]);

printf ("\t\tSize in bytes of region %d\n", size);

*/
/* 3.3 Read data into the data buffer from the subsetted region
*/
2
*/
datbuf = (float32 *)malloc(size);
status = SWextractregion (SWid index, regionID, "Fakedata", HDFE INTERNAL,
datbuf) ;
printf ("\t\tStatus returned by SWextractregion %d\n", status);
k = 0;
for(i = 0; i < 10; i++)
{
printf ("\t\t%d %$f\n", i, datbuflk]);
k++;
}

free (datbuf) ;
free (numtype) ;

status = SWdetach (SWid index);
status = SWclose(swfidc test);

6.1.2.2 The FORTRAN Examples of a Subsetting for a Swath

Example 1
e
c Simple driver to define time period for a swath, and then extract all the
c entries of a specified data field within the defined time period.

6-14 162-WP-004-001

NOTE: Before running this driver make sure that the file, Swathc Test.h5,
produced by a test driver testswath he3.c exists.

implicit none

integer status

integer swfidc test

integer SWid co

integer*4 k

integer*4 periodID

integer*4 rank, size

integer*4 dims (8)

integer numtype (1)

real*8 timebuf (10)

real*8 starttime, stoptime

integer swclose, swdetach, swextper, swperinfo
integer swopen, swattach, SWdeftmeper
integer H5F ACC_RDONLY

parameter (HS5F ACC_RDONLY = 0)
integer*4 HDFE MIDPOINT

parameter (HDFE MIDPOINT = 0)
integer*4 HDFE INTERNAL

parameter (HDFE INTERNAL = 0)

swfidc_test = SWopen("Swath.h5", H5F ACC RDONLY)
print *,' Swath file ID returned by SWopen = ',swfidc_ test

SWid co = SWattach (swfidc test, "Simple")
print *,' Swath ID returned by SWattach on swath Swathco = '
> ,SWid co

starttime = 5.5e7
stoptime = 6.5e7

periodID = SWdeftmeper (SWid co,starttime,stoptime, HDFE MIDPOINT)
print *,!' Period id returned by SWdeftimeperiod = ',periodID

Retrieve basic information about data fields "BandC"
and "Time"

[0)
prt
o)
ot
o
)
Il

SWperinfo (SWid co,periodID, "Time", numtype, rank,dims

6-15 162-WP-004-001

> ,Size)

print *,!' Status returned by SWperiodinfo = ', status
print *,' Number type of region = ',numtype,
> ! Rank of region = ',rank

print *,' Dimensions of region = ', dims(1l),' ', dims (2)
print *,' Size of region in bytes = ', size

status = SWperinfo (SWid co,periodID, "Time", numtype, rank
> ,dims, size)

print *,' Status returned by SWperiodinfo = ', status
print *,' Number type of region = ',numtype,
> ! Rank of region = ', rank

print *
> , ! Dimensions of region = ', dims(1l), ' ',dims (2)
print *,' Size of region in bytes = ',size

status = SWextper (SWid co,periodID,"Time",HDFE INTERNAL
> , timebuf)

print *,!' Status returned by SWextractperiod = ',status

do 10 k = 1, dims (1)
print *,' k=', k, ' timebuf (', k,')= ', timebuf (k)
10 continue

status = SWdetach (SWid co)
print *,' Status returned by SWdetach = ',status

status=SWclose (swfidc test)

stop

end
Example 2
o
c Simple driver demonstrating how to perform subsetting along the "Track"
c dimension and along any other dimension defined within a specified swath.
c NOTE: make sure that the HDF-EOS file Swathc Test.h5 produced by the test
c driver testswath he3.c exists.

implicit none

integer status

integer swfidc test, SWid simple, SWid oned, SWid index
integer*4 rank, size, regionID

integer i,J,k

integer*4 dims (8)

integer numtype

real*4 datbuf (48000)

real*8 timebuf (48000)

real*8 corlon(2), corlat(2), range(2)

integer swopen, swattach, swdefvrtreg, swreginfo, swextreg

6-16 162-WP-004-001

integer swdetach, swclose

integer*4 swdefboxreg

integer H5F ACC_RDONLY
parameter (H5F ACC_RDONLY = 0)
integer*4 HDFE MIDPOINT
parameter (HDFE MIDPOINT = 0)
integer*4 HDFE INTERNAL
parameter (HDFE INTERNAL = 0)
integer HDFE NOPREVSUB
parameter (HDFE_NOPREVSUB = -1)

swfidc test = SWopen ("Swathc Test.h5", H5F ACC RDONLY)

print *,' Swath file ID returned by SWopen = ',swfidc test
SWid oned = SWattach(swfidc_ test, "OnedGeo")

print *,' Swath ID returned by SWattach on swath "OnedGeo" = '
> ,SWid oned

SWid simple = SWattach(swfidc test, "Simple")
print *,' Swath ID returned by SWattach on swath "Simple" = '
> ,SWid simple

SWid index = SWattach (swfidc test, "Index")
print *,' Swath ID returned by SWattach on swath "Index" =
> ,SWid index

1.1 Perform subsetting on the named field

range (1) = 46353450.0

range (2) = 46500000.0

regionID = SWdefvrtreg(SWid oned, HDFE NOPREVSUB, "Time", range)
print *,' Region id returned by SWdefvrtregion = ',regionID

1.2 Retrieve information about the subsetted region
for the named data field

status = SWreginfo (SWid oned, regionlID,"Time",numtype,rank,dims
> ,Size)

print *,!' Status returned by SWregioninfo = ', status

print *,' Number type of field = ', numtype

print *,' Rank of field = ', rank

print *,' Dimension of subsetted region: ', dims (1)

print *,' Size in bytes of region = ',size

6-17 162-WP-004-001

1.3 Read data into the data buffer from the subsetted region

status = SWextreg(SWid oned, regionID, "Time",HDFE INTERNAL

> , timebuf)
print *,' Status returned by SWextractregion = ', status
do 10 k =1, 5
print *,!' k=', k,'" timebuf(',k,')= "',timebuf (k)
10 continue

status = SWdetach (SWid oned)
print *,' Status returned by SWdetach = ', status

corlon(l) = 75.5
corlat(l) = 35.5
corlon(2) = 77.5
corlat(2) = 36.5

regionID = SWdefboxreg(SWid simple,corlon,corlat, HDFE MIDPOINT)
print *,' Swath region ID returned by SWdefboxregion = ',
> regionID

2.2 Retrieve information about the subsetted region
for the named data field

status = SWreginfo (SWid simple, regionID, "Temperature", numtype
> ,rank,dims, size)

print *,' Status returned by SWregioninfo = ', status

print *,!' Number type of field = ',numtype

print *,!' Rank of field = ', rank

print *,' Dimensions of subsetted region: ', dims(l), dims(2)
print *,' Size in bytes of region = ',size

status = SWextreg(SWid simple, regionID, "Temperature"
> ,HDFE INTERNAL, datbuf)

print *,!' Status returned by SWextractregion = ', status
k=1

do 30 i = 1,10
do 20 § =1, 5

print *,°' i=', i,"' 3=', 3, ' datbuf (', k,'"')="',datbuf (k)
k=k+1

20 continue

30 continue

6-18 162-WP-004-001

40
50

2.4 Retrieve information about the subsetted region
for the named data field

status = SWreginfo (SWid simple, regionID,"Latitude", numtype, rank
> , dims, size)

print *,' Status returned by SWregioninfo = ', status

print *,' Number type of field = ', numtype

print *,' Rank of field = ', rank

print *,' Dimensions of subsetted region: ',dims(1l),dims (2)
print *,' Size in bytes of region = ', size

status = SWextreg(SWid simple, regionID, "Latitude", HDFE INTERNAL
, datbuf)
print *,' Status returned by SWextractregion = ', status
k=1
do 50 i = 1,10
do 40 3 =1, 5
print *,' i=', i," 3=', 3, ' datbuf (', k,")=",datbuf (k)
k=k+1
continue
continue

status = SWdetach (SWid simple)
print *,' Value returned by SWdetach = ',status

corlat(l) = 37.0
corlat (2) = 38.5
corlon(l) = 76.0
corlon(2) = 77.5

regionID = SWdefboxreg(SWid index, corlon, corlat,HDFE MIDPOINT)
print *,' Region ID returned by SWdefboxregion = ', regionID

3.2 Retrieve information about the subsetted region
for the named data field

status = SWreginfo (SWid index,regionID, "Fakedata", numtype, rank,
dims, size)

print *,!' Status returned by SWregioninfo = ', status

6-19 162-WP-004-001

print *,' Number type of field = ', numtype

print *,' Rank of field = ', rank

print *,!' Dimensions of subsetted region: ',dims(1l),dims(2)

print *,' Size in bytes of region = ', size
O o
c 3.3 Read data into the data buffer from the subsetted region
€ o

status = SWextreg(SWid index, regionID, "Fakedata", HDFE INTERNAL,

> datbuf)

print *,' Status returned by SWextractregion = ', status

do 60 k = 1,10

print *,' k=",k,"' datbuf (', k,")= ',datbuf (k)
60 continue

status = SWdetach (SWid index)
status SWiclose (swfidc test)

stop
end

6.2 Grid Examples

This section contains several examples of the use of the Grid interface from both C and
FORTRAN programs. First, there are simple examples in C and FORTRAN which demonstrate

the use of most of the functions in the Grid interface.

6.2.1 Creating a Simple Grid

The following C and FORTRAN programs each create, define, and write a simple Grid data set

to an HDF-EQS file using the HDF-EOS Grid interface.

6.2.1.1 A C Example of a Simple Grid Creation

2
/* Simple driver to create and write data

/* to the HDF-EOS grid file

2 S —

#include "HdfEosDef.h"

main ()

{
herr t status = -1;
hid t gdfid, GDid utm, GDid igoode, GDid polar np,
hid t GDid geo, GDid som, GDid lamaz, GDid hom;
hid t GDid lamcon, GDid tm, GDid poly, GDid is;

6-20

GDid polar sp;

162-WP-004-001

int i, cnt, zonecode, attr[4] = {11,33,66,99};
int32 t indexl = 0, index2 = 0;

float32 wutmray[60][80], ray2[155][40], ray3[25]([80];
float32 ©psray[360]([90], gooderay[120][60];

float32 utmhght[80], georay[60][80];

float32 gooderay2[45][60], psray2[75][90];

float32 lamazray2[65][180], georay2[85][80];

float32 utment = -799.0, ray3cnt = -19.5;
float32 pscnt = -134.5, goodecnt = 27.4;
float32 hghtinit = 323.0, lamazcnt = -299.5, geocnt = 2001.0;
float attr2[5] = {5.1,17.2,28.3,39.4,57.5};
int32 spherecode, xdim, ydim, ray[8];
hssize t start([2] = {10, 10};

hsize t stride[2] = {1, 1};

hsize t edge[2] = {10, 10};

hsize t intattr([l] = {4};

hsize t floatattr([l] = {5};

hsize t *attrcount = (hsize t *)NULL;

float64 projparm[l6], uplft[2], lowrgt[2];
float64 1lonval[5], latvall[5];

float64 *datbuf = (float64 *)NULL;

float64 utmtmeray[4800], tmeinit = 35232487.2;

/* ___ */
/* Populate data arrays */
/F */

while (indexl < 60) {
while (index2 < 80) {

utmray[indexl] [index2] = utmcnt;
georay[indexl] [index2] = geocnt;
index2++;
utmcnt = utmcent + 0.4;
geocnt = geocnt + 0.2;
}
indexl++;
index2 = 0;
}
index1=0;
while (indexl < 4800) {
utmtmeray[indexl] = tmeinit;
indexl++;
tmeinit = tmeinit + 70.7;

}

6-21 162-WP-004-001

index1=0;
while (indexl < 80) {

utmhght [index1] = hghtinit;
hghtinit = hghtinit + 2.75;
indexl++;

}

index1=0;

index2=0;

while (indexl < 85) {
while (index2 < 80) {

georay2[indexl] [index2] = geocnt;
index2++;
geocnt = geocnt - .9;

}

indexl++;

index2 = 0;

}

index1=0;
index2=0;
while (indexl < 25) {
while (index2 < 90) {
ray3[indexl] [index2] = ray3cnt;
index2++;
ray3cnt=ray3cnt + .1;
}
indexl++;
index2 = 0;

}

index1=0;
index2=0;
while (indexl < 360) {
while (index2 < 90) {
psray[indexl] [index2] = pscnt;
index2++;
pscnt = pscnt + .4;
}
indexl++;
index2 = 0;

}

index1=0;

index2=0;

while (indexl < 75) {
while (index2 < 90) {

psray2[indexl] [index2] = pscnt;
index2++;
pscnt = pscnt - .4;
}
indexl++;
index2 = 0;
}
index1=0;

index2=0;

6-22

162-WP-004-001

while (indexl < 120) {
while (index2 < 60) {

gooderay[indexl] [index2] = goodecnt;

index2++;

goodecnt = goodecnt + .4;
}
indexl++;
index2 = 0;

}

index1=0;

index2=0;

while (indexl < 45) {
while (index2 < 60) {

gooderay2[indexl] [index2] = goodecnt;
index2++;
goodecnt = goodecnt - .4;

}

indexl++;

index2 = 0;

index1=0;

index2=0;

while (indexl < 65) {
while (index2 < 180) {

lamazray2[indexl] [index2] = lamazcnt;
index2++;
lamazcnt = lamazcnt + .6;

}

indexl++;

index2 = 0;

}

index1=0;
while (indexl < 16) {

iprojparm[indexl] = 0.0;

indexl++;

}
2 ——
/* Open HDF-EOS file "Grid.h5" (if the named
/* file does not exist, it will be automatically
/* created with the read/write access mode
2 —
gdfid = GDopen ("Grid.h5", H5F ACC TRUNC) ;

2
/* Create UTM grid

/* __
xdim = 60;

ydim = 80;

uplft[0] = -512740.28306;

uplft[1l] = 2733747.62890;

lowrgt[0] = -12584.57301;

6-23

162-WP-004-001

lowrgt[1l] = 1946984.64021;

GDid utm = GDcreate (gdfid, "UTM", xdim, ydim, uplft, lowrgt);

2 */
/* Create Geographic grid */
2 */
xdim = 60;

ydim = 80;

uplft[0] = -126000000.00;

uplft[1l] = -064000000.00;

lowrgt[0] = -120000000.00;

lowrgt[1l] = -072000000.00;

GDid geo = GDcreate(gdfid, "Geo", xdim, ydim, uplft, lowrgt);

2 S * /
/* Create Polar Stereo grid of north hemisphere */
2 * /
xdim=360;

ydim=90;

uplft[0] = -10447125.82759;

uplft[1l] = 10447125.82759;

lowrgt[0] = 10447125.82759;

lowrgt[1l] = -10447125.82759;

gdid polar np = GDcreate(gdfid, "Polar np", xdim, ydim, uplft
2 */

/* Create Polar Stereo grid of south hemisphere */
2 — */
xdim=360;

ydim=90;

uplft[0] = 10447125.82759;

uplft[1l] = -10447125.82759;

lowrgt[0]
lowrgt[1]

-10447125.82759;
10447125.82759;

gdid polar sp = GDcreate(gdfid, "Polar sp", xdim, ydim, uplft

2 */
/* Create Interrupted Goode grid */
2 */
xdim=120;

ydim=60;

uplft[0] = -11119487.42844;

uplft[1l] = 8673539.24806;

lowrgt[0] = 15567282.39984;

lowrgt[1l] = -8673539.24806;

, lowrgt);

, lowrgt);

GDid igoode = GDcreate(gdfid, "IGoode", xdim, ydim, uplft, lowrgt);

2 * /
/* Create Space Oblique Mercator grid */
/* ___ */

6-24

162-WP-004-001

xdim=359;

ydim=321;
uplft[0] = 49844710.48057;
uplft[l] = 884884.39883;

lowrgt[0] = 30521379.68485;
lowrgt[1l] = 1152027.64253;

GDid som = GDcreate (gdfid, "SOM", xdim, ydim, uplft, lowrgt):;

2 * /
xdim=719;

ydim=180;

uplft[0] = 0.0000;

uplft[1l] 9009950.36324;

lowrgt[0] 0.0000;

lowrgt[1] -9009950.36324;

GDid lamaz GDcreate(gdfid, "Lamaz", xdim, ydim, uplft, lowrgt);

2 2 —— */
/* Create Hotin Oblique Mercator grid */
2 */
xdim=200;

ydim=90;

uplft[0] = 3422259.57265;

uplft[1l] = 6824822.05796;

lowrgt[0] = -17519429.48100;

lowrgt[1l] = 4994368.88166;

GDid hom = GDcreate(gdfid, "hom", xdim, ydim, uplft, lowrgt);

2 */
xdim=351;

ydim=171;

uplft[0] = -2279109.37671;

uplft[1l] 12358083.24054;

lowrgt[0] -56342817.96247;

lowrgt[1] -24776979.34092;

GDid lamcon = GDcreate(gdfid, "lamcon", xdim, ydim, uplft, lowrgt);

2 * /
/* Create Transverse Mercator grid */
/* ___ */
xdim=181;

ydim=171;

uplft[0] = 4855670.77539;

uplft[1] = 9458558.92483;

lowrgt[0] = 5201746.43983;

lowrgt[1l] = -10466077.24942;

6-25 162-WP-004-001

GDid tm = GDcreate(gdfid, "tm", xdim, ydim, uplft, lowrgt);

2 S — */
/* Create Polyconic grid */

2 S —— */
xdim=161;

ydim=171;

uplft[0] = -250873.85859;

uplft[1l] = 12669051.66767;

lowrgt[0] = 850873.85859;

lowrgt[1l] = -7137259.12615;

GDid poly = GDcreate(gdfid, "poly", xdim, ydim, uplft, lowrgt);
2 S —— */

/* Create IS grid */

2 */
xdim=351;

ydim=171;

uplft[0] = 1436267.12618;

uplft[1l] = 9451564.31420;

lowrgt[0] = 1343604.73094;

lowrgt[1l] = -9451564.31420;

GDid is = GDcreate(gdfid, "is", xdim, ydim, uplft, lowrgt);

2 S —— */
/* Define projections */
/* ___ */
zonecode = -13;
spherecode = 0;

for (i=0; i < 16; i++)
{
projparm[i]=0.;

}

status = GDdefproj (GDid utm, GCTP_UTM, zonecode, spherecode, projparm);

for (i=0; i < 16; i++)
{
projparm([i]=0.;
}
spherecode = 0;
projparm([5] = 40000000.00;

status=GDdefproj (GDid polar np, GCTP_PS, NULL, spherecode, projparm);

for (i=0; i < 16; i++)
{
projparm[i] = 0.;

}

6-26 162-WP-004-001

status=GDdefproj (GDid igoode, GCTP_GOOD, NULL, NULL, projparm);

for (i=0; 1 < 16; i++)
{
projparm([i]=0.;

}
status=GDdefproj (GDid lamaz, GCTP_LAMAZ, NULL, NULL, projparm);

for(i=0; 1 < 16; i++)
{

projparm([i] = 0.;
}
projparm[2] = 3;
projparm[3]
projparm[l2] = 1;

Il
—
o1
o
N

status=GDdefproj (GDid som, GCTP_SOM, NULL, NULL, projparm);
status=GDdefproj (GDid geo, GCTP_GEO, NULL, NULL, NULL);

for(i=0; i < 16; i++)

{

projparm[i] = 0.;

}

projparm([2] = 0.9996;
projparml[5] = 20000000.00;
projparm(8] = -75000000.00;
projparm([9] = 10000000.00;
projparm[10] = -95000000.00;
projparm[11] = 30000000.00;

status=GDdefproj (GDid hom, GCTP HOM, NULL, NULL, projparm);

for(1i=0; 1 < 16; i++)
{

projparm([i] = 0.;
}
projparm[2] 20000000.00;
projparm[3] 40000000.00;
projparm[4] = -75000000.00;

status=GDdefproj (GDid lamcon, GCTP_ LAMCC, NULL, NULL, projparm);

for (i=0; i < 16; i++)
{

projparm([i] = 0.;
}
projparm[2] = 0.9996;
projparm([4] -75000000.00;
projparm[6] 5000000.00;

status=GDdefproj (GDid tm, GCTP TM, NULL, NULL, projparm);
for(i=0; 1 < 16; i++)

{
projparm[i] = 0.;

6-27 162-WP-004-001

}

projparm([4] = 75000000.00;
projparm[5] -25000000.00;
projparm[6] = 300000.00;

status=GDdefproj (Ghid poly, GCTP POLYC, NULL, NULL, projparm);

for (i=0; i < 16; i++)
{
projparm[i] = 0.;
}
projparm[4] = 0.;
projparm([5] = 40000000.00;

status=GDdefproj (GDid is, GCTP_ ISINUS, NULL, NULL, projparm);

2 S * /
/* Define pixel registration in the grids */
2 * /

status = GDdefpixreg(GDid utm, HDFE CORNER) ;
status = GDdefpixreg(GDid polar np, HDFE CORNER) ;
status = GDdefpixreg(GDid igoode, HDFE CORNER) ;
status = GDdefpixreg(GDid som, HDFE CORNER) ;
status = GDdefpixreg(GDid lamaz, HDFE CORNER) ;
status = GDdefpixreg(GDid geo, HDFE CORNER) ;

2 *)
/* Define origin of projections in the grids */
2 */

status = GDdeforigin (GDid utm, HDFE GD UL);
status = GDdeforigin(GDid polar np, HDFE GD UR);
status = GDdeforigin(GDid igoode, HDFE GD LL);
status = GDdeforigin(GDid som, HDFE GD LR);
status = GDdeforigin(GDid lamaz, HDFE GD UL);
status = GDdeforigin (GDid geo, HDFE GD UR);

/* ___ */
/* Define dimensions */
2 *

status = GDdefdim(GDid utm, "Conduction", 25);
status = GDdefdim(GDid utm, "Timedim", 4800);
status = GDdefdim(GDid utm, "Hghtdim", 80);

status = GDdefdim(GDid polar np, "Convection", 75);
status = GDdefdim(GDid igoode, "Radiant", 45);
status = GDdefdim(GDid som, "Emission", 55);

status = GDdefdim(GDid lamaz, "Flux", 65);

status = GDdefdim(GDid geo, "Gradient", 85);

/* ___ */
/* Detach from the grids */
2 *

status = GDdetach (GDid utm);
status = GDdetach (gdid polar np);
status = GDdetach (GDid polar sp);
status = GDdetach (GDid igoode);

6-28 162-WP-004-001

status = GDdetach (GDid som) ;

status = GDdetach (GDid lamaz);

status = GDdetach (GDid geo);

status = GDdetach (GDid hom) ;

status = GDdetach (GDid lamcon) ;

status = GDdetach (GDid tm) ;

status = GDdetach (GDid poly) ;

status = GDdetach (GDid is);

2 S — */
/* Re-attach to the grids */
2 S — */
GDid utm = GDattach (gdfid, "UTM");

GDid igoode = GDattach (gdfid, "IGoode");

GDid lamaz = GDattach(gdfid, "Lamaz");

GDid polar np = GDattach(gdfid, "Polar np");

GDid som = GDattach (gdfid, "SOM");

GDid geo = GDattach (gdfid, "Geo");

/* ___ */
/* Define data fields for the grids */
2 S —— */

status = GDdeffield(GDid utm, "Voltage",
"XDim,YDim",NULL,H5T_NATIVE_FLOAT, HDFE_AUTOMERGE);

status = GDdeffield(GDid utm, "Drift", "XDim,YDim",NULL,H5T NATIVE FLOAT,
HDFE_AUTOMERGE);

status = GDdeffield(GDid utm, "Time", "Timedim",NULL,H5T NATIVE DOUBLE,
HDFE_AUTOMERGE);

status = GDdeffield(GDid utm, "Height", "Hghtdim",NULL,H5T NATIVE FLOAT,
HDFE_AUTOMERGE);

status = GDdeffield(GDid utm, "Impedance", "XDim,YDim",
NULL,H5T_NATIVE_FLOAT,HDFE_AUTOMERGE);

status = GDdeffield(GDid utm, "Grounding", "Conduction,YDim",
NULL,H5T_NATIVE_FLOAT, HDFE_NOMERGE);

status = GDdeffield(GDid igoode, "SensorG",
"XDim,YDim",NULL,H5T_NATIVE_FLOAT, HDFE_NOMERGE);

status = GDdeffield(GDid igoode, "VoltageA",
"Radiant,YDim",NULL,H5T_NATIVE_FLOAT, HDFE_NOMERGE);

status = GDdeffield(GDid polar np, "Bypass",
"XDim,YDim",NULL,H5T_NATIVE_FLOAT, HDFE_NOMERGE);

status = GDdeffield(GDid lamaz, "Temperature", "Flux,YDim",
NULL,H5T_NATIVE_FLOAT, HDFE_NOMERGE);

status = GDdeffield(GDid geo, "Depth", "XDim,YDim", NULL,H5T NATIVE FLOAT,
HDFE_NOMERGE);

status = GDdeffield(GDid geo, "Interval", "Gradient,YDim",
NULL,H5T_NATIVE_FLOAT, HDFE_NOMERGE);

status = GDdetach (GDid utm);
GDid utm = GDattach (gdfid, "UTM");

/% x /
/* Write in data to the data fields */
/% x /

status = GDwritefield(GDid utm, "Voltage", start, stride, edge, utmray):;

6-29 162-WP-004-001

status = GDwritefield(GDid utm, "Drift", start, NULL, edge, utmray);

start[0] = 0;
edge[0] 4800;

status = GDwritefield(GDid utm, "Time", start, NULL, edge, utmtmeray);

start[0] = 0;
edge[0] = 80;

status = GDwritefield(GDid utm, "Height", start, NULL, edge, utmhght);

start[0] = 0;
start[1l] = 0;

edge[0] = 60;
edge[1] = 80;

status = GDwritefield(GDid utm, "Impedance", start, NULL, edge, utmray);

start[0] = 0;

edge[0] = 25;
start([1l] = 0;
edge[1l] = 80;

status = GDwritefield(GDid utm, "Grounding", start, NULL, edge, ray3);

start[0] = 0;
edge[0] = 80;
start([1l] = 0;
edge[1l] = 60;

status = GDwritefield(GDid igoode, "SensorG", start, NULL, edge,
gooderay) ;

start[0] = 0;
start[1l] = 0;
edge[0] = 45;
edge[l] = 60;

status = GDwritefield(GDid igoode, "VoltageA", start, NULL, edge,
gooderay?) ;

start[0] =
start[1]
edge[0]
edge[1] =

([l
@ oy O O
O O ~e N

~.

status = GDwritefield(GDid polar np, "Bypass", start, NULL, edge, psray):;

start[0] =
start[1]
edge[0]
edge[1] =

o
0 oy O O
O U1 ~e N

~.

~.

6-30 162-WP-004-001

status = GDwritefield(GDid lamaz, "Temperature", start, NULL, edge,
lamazray?2) ;

start[0] = 0;
start([1l] = 0;
edge[0] = 60;
edge[l] = 80;

status = GDwritefield(GDid geo, "Depth", start, NULL, edge, georay);

start[0] = 0;
start[1l] = 0;
edge[0] = 85;
edge[l] = 80;
status = GDwritefield(GDid geo, "Interval", start, NULL, edge, georay2?);

2 *)
/* Write attributes for the UTM grid */
/* ___ */

status = GDwriteattr (GDid utm, "Resistance", H5T NATIVE INT, intattr,
attr);

status = GDwriteattr (GDid utm, "Current", H5T NATIVE FLOAT, floatattr,
attr2);

2 *)
/* Detach from the grids */
2 */

status = GDdetach (GDid utm) ;
status = GDdetach (GDid polar np);
status = GDdetach (GDid igoode) ;
status = GDdetach (GDid som) ;
status = GDdetach (GDid lamaz);
status = GDdetach (GDid geo) ;

/* ___ */
/* Close the file "Grid.h5" x/
2 *

status = GDclose (gdfid);
}

6.2.1.2 A FORTRAN Example of a Simple Grid Creation

o
c Simple driver to create and write data
c to the HDF-EOS grid file
o
program testgrid
implicit none
integer status

6-31 162-WP-004-001

integer
integer
integer*4
integer*4
integer*4
integer*4

integer
integer*4
integer*4

real*4
real*4
real*4
real*4
real*4
real*4
real*4
real*4
real*4

integer*4
integer*4

integer*4
integer*4
integer*4
integer*4

real*8

real*8

integer
integer
integer
integer
integer

integer
parameter
integer
parameter
integer
parameter
integer
parameter
integer
parameter
integer
parameter
integer
parameter
integer
parameter
integer
parameter

gdfid

dummy

GDid utm, GDid igoode, GDid polar np
GDid polar sp

GDid geo, GDid som, GDid lamaz, GDid hom
GDid lamcon, GDid tm, GDid poly, GDid is

i, attr (4)
zonecode
indexl, index?2

utmray (60,80), ray3(25,80)
psray(360,90), gooderay(120,60)
utmhght (80), georay(60,80)
gooderay?2 (45,60), psray2(75,90)
lamazray2 (65,180), georay2(85,80)
utmcnt, ray3cnt

pscnt, goodecnt

hghtinit, lamazcnt, geocnt
attr2(5)

spherecode, xdim, ydim
start (2)

stride (2)
edge (2)
intattr (1)
floatattr (1)

projparm(16), uplft(2), lowrgt(2)
utmtmeray (4800), tmeinit

gdopen, gdcreate,gdattach

gddefproj, gddefdim, gddeffld, gddetach
gdclose

gdwrfld, gdwrattr, gddeforigin
gddefpreg

H5F ACC_RDONLY
(H5F_ACC_RDONLY = 0)
H5F ACC_RDWR

(H5F ACC_RDWR = 1)
H5F ACC_TRUNC

(H5F ACC_TRUNC = 2)
H5F ACC_DEBUG
(H5F_ACC_DEBUG
H5F ACC_EXCL
(H5F_ACC_EXCL = 4)

H5T NATIVE FLOAT

(H5T NATIVE FLOAT = 1)
H5T NATIVE INT

(H5T NATIVE INT = 0)
H5T NATIVE DOUBLE

(H5T NATIVE DOUBLE = 2)
HDFE AUTOMERGE
(HDFE_AUTOMERGE = 1)

Il
o]
-

6-32

162-WP-004-001

integer HDFE NOMERGE

parameter (HDFE_NOMERGE = 0)
integer HDFE CENTER
parameter (HDFE CENTER = 0)
integer HDFE CORNER
parameter (HDFE_CORNER = 1)
integer HDFE _GD UL
parameter (HDFE _GD UL = 0)
integer HDFE GD UR
parameter (HDFE GD UR = 1)
integer HDFE GD LL
parameter (HDFE GD LL = 2)
integer HDFE GD LR
parameter (HDFE _GD LR = 3)
integer HDFE NENTDIM
parameter (HDFE _NENTDIM = O0)
integer HDFE NENTDFLD
parameter (HDFE_NENTDFLD = 4)
integer HDFE NOPREVSUB
parameter (HDFE_NOPREVSUB = -1)
integer GCTP_GEO
parameter (GCTP_GEO = 0)
integer GCTP_UTM
parameter (GCTP_UTM = 1)
integer GCTP_LAMCC
parameter (GCTP_LAMCC = 4)
integer GCTP_PS
parameter (GCTP_PS = 6)
integer GCTP_POLYC
parameter (GCTP_POLYC = 7)
integer GCTP_TM
parameter (GCTP_TM = 9)
integer GCTP_ LAMAZ
parameter (GCTP_LAMAZ = 11)
integer GCTP_HOM
parameter (GCTP_HOM = 20)
integer GCTP_SOM
parameter (GCTP_SOM = 22)
integer GCTP_GOOD
parameter (GCTP_GOOD = 24)
integer GCTP_ISINUS
parameter (GCTP_ISINUS = 99)
status = -1

attr(l) = 11

attr(2) = 33

attr(3) = 66

attr(4) = 99

attr2(1) = 5.1

attr2(2) = 17.2

attr2(3) = 28.3

attr2(4) = 39.4

attr2(5) = 57.5

start(l) = 10

6-33 162-WP-004-001

10
20

30

40

50
60

70
80

start (2) 10
stride(l) = 1
stride(2) =1

edge (1) = 10

edge (2) =10
intattr (1) = 4
floatattr(l) = 5
tmeinit = 35232487.2
geocnt = 2001.0
goodecnt = 27.4
lamazcnt = -299.5
hghtinit = 323.0
pscnt = -134.5
utment = -799.0
ray3cnt = -19.5

do 20 indexl =1, 60
do 10 index2 =1, 80
utmray (indexl, index2) = utmcnt
georay (indexl, index2) = geocnt
utmcnt = utmcnt + 0.4
geocnt = geocnt + 0.2
continue
continue

do 30 indexl =1,4800

utmtmeray (indexl) = tmeinit
tmeinit = tmeinit + 70.7
continue

do 40 index1l =1, 80
utmhght (indexl) = hghtinit
hghtinit = hghtinit + 2.75
continue

do 60 indexl =1, 85
do 50 index2 =1, 80

georay?2 (indexl, index2) = geocnt
geocnt = geocnt - .9
continue
continue

do 80 index1l =1, 25
do 70 index2 =1, 90
ray3 (indexl, index2) = ray3cnt
ray3cnt=ray3cnt + .1
continue
continue

do 100 indexl =1, 360
do 90 index2 =1, 90

6-34

162-WP-004-001

Q Q

psray(indexl,index2) = pscnt
pscnt = pscnt + .4

90 continue

100 continue

do 120 indexl =1, 75
do 110 index2 =1, 90

psray?2 (indexl, index?2) = pscnt
pscnt = pscnt - .4
110 continue

120 continue

do 140 indexl =1, 120
do 130 index2 =1, 60

gooderay (indexl, index?2) = goodecnt
goodecnt = goodecnt + .4
130 continue

140 continue

do 160 indexl =1, 45
do 150 index2 =1, 60

gooderay? (indexl, index2) = goodecnt
goodecnt = goodecnt - .4

150 continue

160 continue

do 240 indexl =1, 65
do 230 index2 =1, 180

lamazray?2 (indexl, index2) = lamazcnt
lamazcnt = lamazcnt + .6

230 continue

240 continue

do 250 indexl =1, 16
projparm(indexl) = 0.0
250 continue

Open HDF-EOS file "Grid.hb" (if the named
file does not exist, it will be automatically
created with the read/write access mode

Create UTM grid

xdim = 60
ydim = 80
uplft(l) = -512740.28306
uplft(2) = 2733747.62890
lowrgt (1) = -12584.57301
lowrgt (2) = 1946984.64021

GDid utm = GDcreate(gdfid, "UTM", xdim, ydim, uplft, lowrgt)

6-35 162-WP-004-001

xdim = 60
ydim = 80
uplft(l) = -126000000.00
uplft(2) = -064000000.00
lowrgt (1) = -120000000.00
lowrgt (2) = -072000000.00

GDid geo = GDcreate(gdfid, "Geo", xdim, ydim, uplft,

xdim=360
ydim=90
uplft (1) = -10447125.82759
uplft(2) = 10447125.82759
lowrgt (1) = 10447125.82759
lowrgt (2) = -10447125.82759

gdid polar np = GDcreate(gdfid, "Polar np", xdim,

1 lowrgt)

xdim=360
ydim=90
uplft(l) = 10447125.82759
uplft(2) = -10447125.82759
lowrgt (1) = -10447125.82759
lowrgt (2) = 10447125.82759

gdid polar sp = GDcreate(gdfid, "Polar sp", xdim,

1 lowrgt)

xdim=120

ydim=60

uplft(l) = -11119487.42844
uplft(2) = 8673539.24806
lowrgt (1) = 15567282.39984
lowrgt (2) = -8673539.24806

GDid igoode = GDcreate (gdfid, "IGoode", xdim, ydim,

1 lowrgt)

6-36

lowrgt)

ydim, uplft,

ydim, uplft,

uplft,

162-WP-004-001

xdim=359

ydim=321
uplft (1) = 49844710.48057
uplft (2) = 884884.39883
lowrgt (1) = 30521379.68485
lowrgt (2) = 1152027.64253

GDid som = GDcreate (gdfid, "SOM", xdim, ydim, uplft,

xdim=719

ydim=180

uplft(l) = 0.0000
uplft(2) = 9009950.36324
lowrgt (1) = 0.0000
lowrgt (2) = -9009950.36324

lowrgt)

GDid lamaz = GDcreate(gdfid, "Lamaz", xdim, ydim, uplft, lowrgt)

xdim=200

ydim=90

uplft (1) = 3422259.57265
uplft (2) = 6824822.05796
lowrgt (1) = -17519429.48100
lowrgt (2) = 4994368.88166

GDid hom = GDcreate(gdfid, "hom", xdim, ydim, uplft,

xdim=351

ydim=171

uplft(l) = -2279109.37671

uplft(2) = 12358083.24054

lowrgt (1) = -56342817.96247

lowrgt (2) = -24776979.34092

GDid lamcon = GDcreate(gdfid, "lamcon", xdim, ydim,
1 lowrgt)

xdim=181
ydim=171

uplft(l) = 4855670.77539
uplft (2) = 9458558.92483
lowrgt (1) = 5201746.43983

6-37

lowrgt)

uplft,

162-WP-004-001

lowrgt (2) = -10466077.24942

GDid tm = GDcreate(gdfid, "tm", xdim, ydim, uplft, lowrgt)

xdim=161

ydim=171

uplft(l) = -250873.85859
uplft(2) = 12669051.66767
lowrgt (1) = 850873.85859
lowrgt (2) = -7137259.12615

GDid poly = GDcreate(gdfid, "poly", xdim, ydim, uplft,

xdim=351
ydim=171
uplft (1) = 1436267.12618
uplft(2) = 9451564.31420
lowrgt (1) = 1343604.73094
lowrgt (2) = -9451564.31420

lowrgt)

GDid is = GDcreate(gdfid, "is", xdim, ydim, uplft, lowrgt)

zonecode = -13
spherecode = 0

do 260 i=1,16
projparm(i)=0.
260 continue

status = GDdefproj (GDid utm, GCTP_UTM, zonecode, spherecode,

1 projparm)

do 270 i=1,16
projparm(i)=0.
270 continue

spherecode = 0
projparm(6) 40000000.00

status=GDdefproj (GDid polar np, GCTP PS, dummy, spherecode,

1 projparm)
do 280 i=1,16

projparm(i)=0.
280 continue

6-38

162-WP-004-001

status=GDdefproj (GDid igoode, GCTP GOOD, dummy, dummy, projparm)

do 290 i=1,16
projparm(i)=0.
290 continue

status=GDdefproj (GDid lamaz, GCTP_LAMAZ, dummy, dummy, projparm)
do 300 i=1,16

projparm(i)=0.
300 continue

projparm(3) = 3
projparm(4) = 150
projparm(13) = 1

status=GDdefproj (GDid som, GCTP_SOM, dummy, dummy, projparm)
status=GDdefproj (GDid geo, GCTP_GEO, dummy, dummy, dummy)
do 310 i=1,16

projparm(i)=0.
310 continue

projparm(3) = 0.9996
projparm(6) = 20000000.00
projparm(9) = -75000000.00
projparm(10) = 10000000.00
projparm(11l) = -95000000.00
projparm(12) = 30000000.00

status=GDdefproj (GDid hom, GCTP HOM, dummy, dummy, projparm)

do 320 i=1,16
projparm(i)=0.
320 continue

projparm(3) = 20000000.00
projparm(4) = 40000000.00
projparm(5) = -75000000.00

status=GDdefproj (GDid lamcon, GCTP_ LAMCC, dummy, dummy, projparm
1)

do 330 i=1,16
projparm(i)=0.
330 continue

projparm(3) = 0.9996
projparm(5) -75000000.00
projparm(7) = 5000000.00

status=GDdefproj (GDid tm, GCTP_TM, dummy, dummy, projparm)

do 340 i=1,16
projparm(i)=0.

6-39 162-WP-004-001

340

350

continue

projparm(5)
projparm(6)
projparm(7) =

status=GDdefproj (GDid poly, GCTP_ POLYC, dummy,

do 350 i=1,16

75000000.00
-25000000.00
300000.00

projparm(i)=0.

continue

projparm(5)
projparm(6)

status=GDdefproj (GDhid is, GCTP ISINUS, dummy,

=0

40000000.00

status
status
status
status
status
status

GDdefpreg (GDid utm, HDFE CORNER)

GDdefpreg (GDid polar np, HDFE CORNER)
GDdefpreg (GDid igoode, HDFE_ CORNER)
GDdefpreg (GDid_som, HDFE CORNER)
GDdefpreg (GDid lamaz, HDFE CORNER)
GDdefpreg (GDid geo, HDFE CORNER)

= GDdeforigin (GDid utm, HDFE GD UL)

status
status
status
status
status
status

(
GDdeforigin (GDid polar np, HDFE GD UR)
GDdeforigin (GDid igoode, HDFE GD LL)

GDdeforigin (GDid som, HDFE GD LR)
GDdeforigin (GDid lamaz, HDFE GD UL)
GDdeforigin (GDid geo, HDFE GD UR)

status
status
status
status
status
status
status
status

GDdefdim
GDdefdim
GDdefdim
GDdefdim
GDdefdim
GDdefdim
GDdefdim
GDdefdim

GDid utm, "Conduction", 25)

GDid utm, "Timedim", 4800)

GDid utm, "Hghtdim", 80)

GDid polar np, "Convection", 75)
GDid igoode, "Radiant", 45)

GDid som, "Emission", 55)

GDid lamaz, "Flux", 65)

GDid geo, "Gradient", 85)

~ o~~~ o~~~ —~

status
status
status

GDdetach (GDid utm)
GDdetach (gdid polar np)
GDdetach (GDid polar sp)

6-40

projparm)

projparm)

162-WP-004-001

status = GDdetach (GDid igoode)
status = GDdetach (GDid som)
status = GDdetach (GDid lamaz)
status = GDdetach (GDid geo)
status = GDdetach (GDid hom)
status = GDdetach (GDid_ lamcon)
status = GDdetach (GDid tm)
status = GDdetach (GDid poly)
status = GDdetach (GDid is)

Re-attach to the grids
GDid utm = GDattach (gdfid, "UTM")
GDid igoode = GDattach(gdfid, "IGoode")
GDid lamaz = GDattach(gdfid, "Lamaz")
GDid polar np = GDattach(gdfid, "Polar np")
GDid som = GDattach (gdfid, "SOM")
GDid geo = GDattach (gdfid, "Geo")

status = GDdeffld(GDid utm, "Voltage", "XDim,¥YDim",""

1 ,H5T4NATIVE4FLOAT, HDFE AUTOMERGE)

status = GDdeffld(GDid utm, "Drift", "XDim,YDim",""

1 ,H5T_NATIVE_FLOAT, HDFE_AUTOMERGE)

status = GDdeffld(GDid utm, "Time", "Timedim",6""

1 ,H5T_NATIVE_DOUBLE, HDFE_AUTOMERGE)

status = GDdeffld(GDid_utm, "Height", "Hghtdim",""

1 ,H5T4NATIVE4FLOAT, HDFE AUTOMERGE)

status = GDdeffld(GDid utm, "Impedance", "XDim,YDim", ""

1 ,H5T_NATIVE_FLOAT,HDFE_AUTOMERGE)

status = GDdeffld(GDid utm, "Grounding", "Conduction,YDim",
1 "",H5T_NATIVE_FLOAT, HDFE_NOMERGE)

status = GDdeffld(GDid igoode, "SensorG", "XDim,YDim",6""

1 ,H5T4NATIVE4FLOAT, HDFE NOMERGE)

status = GDdeffld(GDid igoode, "VoltageA", "Radiant,¥Dim",""
1 ,H5T_NATIVE_FLOAT, HDFE_NOMERGE)

status = GDdeffld(GDid polar np, "Bypass", "XDim,YDim",""

1 ,H5T_NATIVE_FLOAT, HDFE_NOMERGE)

status = GDdeffld(GDid lamaz, "Temperature", "Flux,YDim", ""
1 ,H5T4NATIVE4FLOAT, HDFE NOMERGE)

status = GDdeffld(GDid geo, "Depth", "XDim,YDim", ""

1 ,H5T_NATIVE_FLOAT, HDFE_NOMERGE)

status = GDdeffld(GDid geo, "Interval", "Gradient,¥YDim", ""
1 ,H5T_NATIVE_FLOAT, HDFE_NOMERGE)

status = GDdetach (GDid utm)
GDid utm = GDhattach(gdfid, "UTM")

6-41

162-WP-004-001

status = GDwrfld(GDid utm, "Voltage", start, stride, edge,
1 utmray)

status = GDwrfld(GDid utm, "Drift", start, stride, edge,

1 utmray)

0
4800

start (1)
edge (1)

status = GDwrfld(GDid utm, "Time", start, stride, edge,
1 utmtmeray)

start (1) = 0
edge (1) = 80

status = GDwrfld(GDid utm, "Height", start, stride, edge,
1 utmhght)

start (1) = 0
start(2) = 0
edge (1) = 60
edge (2) = 80

status = GDwrfld(GDid utm, "Impedance", start, stride, edge,
1 utmray)

start (1) = 0
edge (1) = 25
start(2) = 0
edge (2) = 80

status = GDwrfld(GDid utm, "Grounding", start, stride, edge,
1 ray3)

start (1) = 0
edge (1) = 80
start(2) =0
edge (2) = 60

status = GDwrfld(GDid igoode, "SensorG", start, stride, edge,
1 gooderay)

start (1) = 0
start (2) = 0
edge (1) = 45
edge (2) = 60

status = GDwrfld(GDid igoode, "VoltageA", start, stride, edge
1 , gooderay?2)

start (1) = 0
start(2) = 0
edge (1) = 60
edge (2) = 80

status = GDwrfld(GDid polar np, "Bypass", start, stride, edge

6-42 162-WP-004-001

1 , psray)

start (1) = 0

start(2) = 0

edge (1) = 65

edge (2) = 80

status = GDwrfld(GDid lamaz, "Temperature", start,
1 edge, lamazray?)

start (1) = 0

start (2) =0

edge (1) = 60

edge (2) = 80

status = GDwrfld(GDid geo, "Depth", start, stride,

1 georay)
start (1) = 0
start (2) = 0
edge (1) = 85
edge (2) = 80

status = GDwrfld(GDid geo, "Interval", start, stride,

1 georay?)

status = GDwrattr (GDid utm, "Resistance", H5T NATIVE INT,

1 intattr, attr)

status = GDwrattr (GDid utm, "Current", HS5T NATIVE FLOAT,

1 floatattr, attr2)

status = GDdetach (GDid utm)

status = GDdetach (GDid polar np)
status = GDdetach (GDid_ igoode)
status = GDdetach (GDid som)
status = GDdetach (GDid lamaz)
status = GDdetach (GDid geo)

Close the file "Grid.h5"

status = GDclose (gdfid)
stop
end

6-43

edge,

162-WP-004-001

6.2.2 Performing Subsetting for a Grid

The following C and FORTRAN programs each demonstrate how to perform subsetting for a
Grid object in an HDF-EQOS file using the HDF-EOS Grid interface.

6.2.2.1 A C Example of a Subsetting for a Grid

2 */
/* Simple driver demonstrating how to perform subsetting along XDim and */
/* ¥YDim for a grid. */
/* NOTE: make sure that the HDF-EOS file Gridc Test.hb produced by the */
/* test driver testgrid he3.c exists. */
2 *)

#include "HdfEosDef.h"

main ()
{

herr t status;

int i;

hid t gdfid, GDid geo;

hid t regionID;

int32 rank, size;

hsize t dims[8];

H5T class t “*numtype = (H5T class t *)NULL;

float32 *pbuffer;

floato4 corlon[2], corlat[2];

floato64d iuplft[2], ilowrgt[2];

iuplft[0] = 0.;

iuplft[l] = 0.;

ilowrgt[0] = O0.;

ilowrgt[l] = O0.;
2 —————— */
/* Open grid file "Gridc Test.hb" and attach to the named grid */
/* objects. */
2 */

gdfid = GDopen ("Gridc Test.h5", H5F ACC RDONLY) ;
printf ("\t\tValue returned by GDopen %d\n\n", gdfid);

GDid geo = GDhattach(gdfid, "Geo");
printf ("\t\tValue returned by GDattach %d\n\n", GDid geo);

/* ___ */
/* Define a longitude-latitude box region for the named grid */
2 */

6-44 162-WP-004-001

corlon[0] = -123.5;
corlon[l] = -121.5;
corlat[0] = -67.0;
corlat[l] = -70.0;

regionID = GDdefboxregion (GDid geo,corlon, corlat);
printf ("\t\tRegion id returned by GDdefboxregion %d\n", regionlID);

/* ___ */
/* Retrieve information about the subsetted region */
/* for the named data field */
2 R ————— */
numtype = (H5T class t *)calloc(l, sizeof (H5T class t));
status = GDregioninfo (GDid geo,

regionID, "Depth", numtype, &rank,dims, &size, iuplft, ilowrgt);
printf ("\t\tStatus returned by GDregioninfo %d\n", status);
printf ("\t\tNumber type of region %d rank of region %d\n", *numtype, rank);
printf ("\t\tDimension of region %lu %$lu Size of region in bytes
%d\n", (unsigned long)dims[0], (unsigned long)dims[1l], size);
printf ("\t\tUpper left point %$f %$f, Lower right point %
Sf\n", iuplft[0],iuplft[l],ilowrgt[0],ilowrgt[1]);

free (numtype) ;

2 */

/* Read data into the data buffer from the subsetted region */

/* ___ */
buffer = (float32 *)malloc(size);

status = GDextractregion(GDid geo, regionID, "Depth", buffer);
printf ("\t\tStatus returned by GDextractregion %d\n", status);
for(i = 0; 1 < 5; i++)
{
printf ("\t\tValue of buffer %f\n",buffer[i]);
}
free (buffer);

status GDdetach (GDid geo) ;
printf ("\t\tValue returned by GDdetach %d\n\n", status);

status = GDclose (gdfid);
printf ("\t\tValue returned by GDclose %d\n", status);

}
6.2.2.2 A FORTRAN Example of a Subsetting for a Grid

O
c Simple driver demonstrating how to perform subsetting along XDim and
c YDim for a grid.
c NOTE: make sure that the HDF-EOS file Gridc Test.h5 produced by the
c test driver testgrid he3.c exists.
€
implicit none
integer gdopen, gdattach, gddetach

6-45 162-WP-004-001

integer
integer
integer
integer
integer
integer
integer
integer*4
integer*4
integer

real*4

real*8
real*8

integer
parameter

iuplft (1)
iuplft (2)
ilowrgt (1)
ilowrgt (2)

gdclose, gdreginfo
gddefboxreg

status

i

gdfid

GDid geo

regionID

rank, size
dims (8)
numtype (1)
buffer (48000)

corlat (2)
ilowrgt (2)

corlon(2),
iuplft (2),

H5F ACC_RDONLY
(H5F_ACC_RDONLY = 0)

Il
oo oo

Q

Open grid file "Gridc Test.h5" and attach to the named grid

objects.
gdfid = GDopen ("Grid.h5", HS5F ACC_RDONLY)
print *,' Value returned by GDopen = ', gdfid
GDid geo = GDhattach(gdfid, "Geo")
print *,!' Value returned by GDattach = ', GDid geo

corlon(l) = -123.5

corlon(2) = -121.5

corlat(l) = -67.0

corlat(2) = -70.0

regionID = GDdefboxreg(GDid geo,corlon, corlat)

print *,!' Region id returned by GDdefboxregion = ',
> regionID

Retrieve information about the subsetted region
for the named data field

6-46 162-WP-004-001

status = GDreginfo (GDid geo, regionID, "Depth",numtype, rank

> ,dims,size,iuplft,ilowrgt)

print *,' Status returned by GDregioninfo = ', status

print *,' Number type of region = ', numtype,

> ! rank of region = ', rank

print *,' Dimension of region = ', dims(l), dims(2),

> ! Size of region in bytes = ', size

print *,' Upper left point = ', iuplft(l),iuplft(2),

> ! Lower right point= ', ilowrgt(l),ilowrgt(2)
€
c Read data into the data buffer from the subsetted region

status = GDextreg(GDid geo, regionID, "Depth", buffer)

print *,' Status returned by GDextractregion = ', status
do 10 1 = 1,5
print *,' Value of buffer ',i, ' is ' buffer (i)
10 continue

status = GDdetach (GDid geo)
print *,' Value returned by GDdetach = ', status

status = GDclose (gdfid)
print *,' Value returned by GDclose = ', status

stop
end

6.3 Combining HDF and HDF-EOS Objects

The HDF-EOS structures, swath, point, and grid, are built out of the standard HDF5 objects such
as groups, data sets, and attributes and thus an HDF-EOS file can contain both HDF and HDF-
EOS entities.

6.3.1 Adding HDF-EOS Structures to an Existing HDF File

In this example we open an existing HDF file, NativeHDF.hdf, and add a swath structure.
Because the swath is an HDF-EOS entity we use the HDF-EOS API routines to open, create,
detach and close, ie, SWopen, S\create, SNdetach, and SWclose.

/* Open HDF file for read-write access */
filelD = SWopen(“NativeHDF._hdf”, DFACC_RDWR);
/* Create Swath Structure */

swathlD = SWcreate(FfilelD, “SwathStructure™);

/* Detach Swath Structure */

status = SWdetach(swathlD);

/* Close File */

status = SWclose(filelD);

)

6-47 162-WP-004-001

This page intentionally left blank.

6-48 162-WP-004-001

7. Writing ODL Metadata into HDF-EOS

7.1 A C Example of Metadata Write

The following C code fragment is an example of how a user can write granule metadata (or
inventory metadata) into their HDF-EOS file. The Metadata Configuration File (MCF), which
the code accesses is given in section 7.3. The output ODL file which results from running the
code in 7.2 is given in section 7.4.

In order to assist a developer of software for producing data in ECS format, a file template called
filetable.temp is provided in section 7.5. This file is similar to the Process Control File used by
the larger SDP Toolkit, but simpler. It is used to specify the relationship between logical file
identifiers used in source code and physical files containing input data or output data. It is also
used to specify the IDs for log status reports and for the MCFs.

It should be mentioned that currently only MTD TOOLKIT (a subset of SDP TOOLKIT that
handles metadata and Time/Date conversions) has been modified to write metadata into HDF-
EOS files utilizing HDF5. Moreover, in the new MTD TOOLKIT for HDF5 some tools, such as
PGS_MET_GetPCAttr() and PGS_MET _InitNonMCF() are not available yet. Details on
Metadata Configuration Files can be found in the SDP Toolkit Users Guide for ECS project,
Section 6.2.1 and Appendix J (33-CD-500-001). Details on how to install and use MTD
TOOLKIT tools can be found in Toolkit MTD Users Guide.

7.2 C Code

/* include files */

#include <PGS MET.h>
#include <PGS_tk.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <hdf5.h>

#include <PGS_SMF.h>
#define INVENTORYMETADATA 1

#define ARCHIVEDMETADATA 2
#define ODL IN MEMORY 0

extern PGSt SMF status
PGS PC GetReference (PGSt MET Logical prodID, PGSt integer *version,char
*referencelD) ;

7-1 162-WP-004-001

int main ()

{

/‘k************‘k*‘k*‘k************‘k*‘k**'k*'k'k'k'k'k'k'k************************

Declarations.
*************************************‘k‘k****‘k‘k************************/
PGSt MET all handles mdHandles;
PGSt MET all handles handles;
char fileNamel [PGSd MET FILE PATH MAX]="";
char fileName2 [PGSd MET FILE PATH MAX]="";
char my HDF file[PGSd MET FILE PATH MAX]="";
char msg [PGS_SMF_MAX MSG SIZE];
char mnemonic [PGS_SMF MAX MNEMONIC SIZE];
char fileMessage [PGS_SMF MAX MSG SIZE];
int32_t sdidl;
PGSt SMF status ret = PGS_S SUCCESS;
char *informationname;
PGSt integer ival =3;
PGSt double dval=203.2;
PGSt integer filelId, fileId2;
PGSt _integer i;
PGSt integer version;
PGSt SMF status returnStatus;
char *mysavall[5];

/‘k****‘k****‘k**‘k****‘k**‘k****‘k**‘k*****'k'k*'k'k'k'k'k************************/

/* Associate logical IDs with physical filenames. */
/'k*********************/

ret=PGS MET SetFileId();
printf ("ret after PGS MET SetFileId()is %d in Main\n", ret) ;

if (ret != PGS_S SUCCESS)
{

printf (" Failed in assigning logical IDs\n");

/*recover file name for fileId=PGSd MET MCF FILE */

version = 1;

fileId = PGSd MET MCF FILE;

returnStatus = PGS _PC GetReference(fileld, é&version,
fileNamel) ;

if (returnStatus != PGS_S SUCCESS)

{
PGS_SMF GetMsg(&returnStatus, mnemonic, msg);
strcpy (fileMessage, msg);
PGS SMF SetDynamicMsg(returnStatus, fileMessage,
"metatest");
}

else

{

7-2 162-WP-004-001

ret) ;

printf ("The input file for ID %d is %s\n",fileld, fileNamel);

informationname=(char *) malloc (330);
/* Initialize MCF file */

fileId = 10250;
ret=°PGS MET Init(fileId,handles);

if (ret !=PGS_S SUCCESS)

{
printf ("initialization failed\n");
return (-1);

}

else

{

printf ("ret after PGS MET Init is %d\n",ret);

}
/* test PGS MET SetAttr */

ival=667788;

ret=PGS MET SetAttr (handles[INVENTORYMETADATA],
"QAPERCENTINTERPOLATEDDATA.1", &ival) ;

printf ("ret after SetAttr for QAPERCENTINTERPOLATEDDATA.1 is %d\n",

’

ival=12345;

ret=PGS MET SetAttr (handles[INVENTORYMETADATA],

"QAPercentMissingData.l", &ival) ;

printf ("ret after SetAttr for QAPercentMissingData.l is %d\n",ret);

ival=123;

ret:PGS_MET_SetAttr(handles[INVENTORYMETADATA],
"QAPercentOutofBoundsData.l", &ival) ;

printf ("ret after SetAttr for QAPercentOutofBoundsData.l is %d\n", ret);

ival=23456;

ret:PGS_MET_SetAttr(handles[INVENTORYMETADATA],
"QAPercentOutofBoundsData.2", &ival) ;

printf ("ret after SetAttr for QAPercentOutofBoundsData.l is %d\n", ret);

ival=56789;

ret=PGS MET SetAttr (handles[INVENTORYMETADATA],

"QAPercentMissingData.2", &ival) ;

printf ("ret after SetAttr for QAPercentMissingData.l is %d\n",ret);

strcpy (informationname, "Exercisel") ;

ret=PGS MET SetAttr (handles[INVENTORYMETADATA],

"AutomaticQualityFlagExplanation.1l", &informationname) ;
printf ("ret after SetAttr for AutomaticQualityFlagExplanation.l is

162-WP-004-001

%$d\n", ret);

strcpy (informationname, "1997/12/23") ;

ret=PGS MET SetAttr (handles[INVENTORYMETADATA],
"RangeBeginningDateTime", &informationname) ;

printf ("ret after SetAttr for RangeBeginningDateTime is %d\n", ret);

strcpy (informationname, "1997.07/30") ;

ret=PGS MET SetAttr (handles[INVENTORYMETADATA],
"RangeBeginningDate", &informationname) ;

printf ("ret after SetAttr for RangeBeginningDate is %d\n",ret);

strcpy (informationname, "ReprocessingplannINVENT") ;

ret=PGS MET SetAttr (handles[INVENTORYMETADATA],
"ReprocessingPlanned", &informationname) ;

printf ("ret after SetAttr for ReprocessingPlanned is %d\n",ret);

strcpy (informationname, "\"ReprocessingplannARCHIVE") ;

ret=PGS MET SetAttr (handles[ARCHIVEDMETADATA],
"ReprocessingPlanned", &informationname) ;

printf ("ret after SetAttr for ReprocessingPlanned is %d\n",ret);

strcpy (informationname, "Reprocessin") ;

ret=PGS MET SetAttr (handles[INVENTORYMETADATA],
"ReprocessingActual", &informationname) ;

printf ("ret after SetAttr for ReprocessingActual is %d\n",ret);

strcpy(informationname, "ID1111");

ret=PGS MET SetAttr (handles[INVENTORYMETADATA],
"LocalGranuleID", &informationname) ;

printf ("ret after SetAttr for LocalGranuleID is %d\n", ret);

strcpy (informationname, "versionl234") ;

ret=PGS MET SetAttr (handles[INVENTORYMETADATA],
"LocalVersionID", &informationname) ;

printf ("ret after SetAttr for LocalVersionID is %d\n",ret);

strcpy (informationname, "Flagl") ;

ret=PGS MET SetAttr (handles[INVENTORYMETADATA],
"DayNightFlag", &informationname) ;

printf ("ret after SetAttr for DayNightFlag is %d\n",ret);

strcpy (informationname, "Flagl") ;

ret=PGS MET SetAttr (handles[INVENTORYMETADATA],
"DayNightFlag", &informationname) ;

printf ("ret after SetAttr for DayNightFlag is %d\n",ret);

strcpy (informationname, "informationl") ;

ret=PGS MET SetAttr (handles[INVENTORYMETADATA],
"ParameterName.l", &§informationname) ;

printf ("ret after SetAttr for ParameterName is %d\n",ret);

7-4 162-WP-004-001

strcpy (informationname, "information2") ;
ret:PGS_MET_SetAttr(handles[INVENTORYMETADATA],
"ParameterName.2", &informationname) ;

printf ("ret after SetAttr for ParameterName.2 is %d\n",ret);

strcpy (informationname, "information3") ;

ret=PGS MET SetAttr (handles[INVENTORYMETADATA],
"ParameterName.3", &informationname) ;

printf ("ret after SetAttr for ParameterName is %d\n",ret);

strcpy (informationname, "information4d") ;

ret=PGS MET SetAttr (handles[INVENTORYMETADATA],
"ParameterName.4", &informationname) ;

printf ("ret after SetAttr for ParameterName is %d\n",ret);

dval=111.11;

ret:PGS_MET_SetAttr(handles[ARCHIVEDMETADATA],
"WestBoundingCoordinate", &dval) ;

printf ("ret WestBoundingCoordinate is %d %f\n",ret,dval);

dval=222.22;

ret:PGS_MET_SetAttr(handles[ARCHIVEDMETADATA],
"northBoundingCoordinate", &dval) ;

printf ("ret northBoundingCoordinate is %d %f\n",ret,dval);

dval=333.33;

ret:PGS_MET_SetAttr(handles[ARCHIVEDMETADATA},
"EastBoundingCoordinate", &dval) ;

printf ("ret EastBoundingCoordinate is %d %f\n",ret,dval);

dval=444.44;
ret=PGS MET SetAttr (handles[ARCHIVEDMETADATA],
"SouthBoundingCoordinate", &dval) ;

printf ("ret SouthBoundingCoordinate is %d %f\n",ret,dval);

dval=11.11;

ret:PGS_MET_SetAttr(handles[INVENTORYMETADATA},
"WestBoundingCoordinate", &dval) ;

printf ("ret WestBoundingCoordinate is %d %f\n",ret,dval);

dval=22.22;
ret:PGS_MET_SetAttr(handles[INVENTORYMETADATA],
"northBoundingCoordinate", &dval) ;

printf ("ret northBoundingCoordinate is %d %f\n",ret,dval);

dval=33.33;

ret:PGS_MET_SetAttr(handles[INVENTORYMETADATA},
"EastBoundingCoordinate", &dval) ;

printf ("ret EastBoundingCoordinate is %d %f\n",ret,dval);

dval=44.44;
ret:PGS_MET_SetAttr(handles[INVENTORYMETADATA],

162-WP-004-001

"SouthBoundingCoordinate", &dval) ;
printf ("ret SouthBoundingCoordinate is %d %f\n",ret,dval);

/* Get the value of set attribute */

dval=11.11;
ret=PGS MET GetSetAttr (handles[INVENTORYMETADATA],
"SouthBoundingCoordinate", &dval) ;

printf ("after GetSetAttr: ret SouthBoundingCoordinate is %d
$f\n", ret,dval);

/* Get data from config file */

ret = PGS_MET_GetConfigData("TEST_PARM_FLOAT", &dval) ;
printf ("after PGS MET GetConfigData : ret TEST PARM INT is 3%d
$f\n", ret, dval);

/* write metadata to HDF and ASCII files */
version =1;
fileId = 5039;

ret = PGS _PC GetReference(fileld, &version, my HDF file);
printf ("after PGS PC GetReference ret =%d\n",ret);
printf ("after PGS PC GetReference my HDF file = %$s\n",my HDF file);

if (ret == PGS_S_SUCCESS)

{
sdid1=PGS_MET SDstart (my HDF file, HSF_ACC_RDWR) ;
printf ("after PGS MET SDstart sdidl =%d\n",sdidl);

}

else

{

return (-1);

printf ("After SDstart sdidl is %d\n",sdidl);
/***x** write INVENTORYMETADATA to HDF file **x**xxx*/

ret:PGS_MET_Write(handles[INVENTORYMETADATA],"Coremetadata",sdidl);
printf ("ret after PGS MET Write is %d\n",ret);

if (ret !=PGS_S _SUCCESS && ret != PGSMET W _METADATA NOT SET)
{

if (ret == PGSMET E MAND NOT SET)

{

printf ("some mandatory parameters were not set\n");

}

else

{

7-6 162-WP-004-001

printf ("HDF write failed\n");

/***** write ARCHIVEDMETADAT to HDF file ****x*x/

ret=PGS MET Write (handles[ARCHIVEDMETADATA],"archivemetadata",
sdidl) ;
printf ("ret after PGS MET Write is %d\n",ret);

if (ret !=PGS_S SUCCESS && ret != PGSMET W _METADATA NOT SET)
{

if (ret == PGSMET E MAND NOT SET)

{

printf ("some mandatory parameters were not set\n");

}

else

{
printf ("HDF write failed\n");

/*****x write to non-HDF file ***x*xx/

fileId = 5804;

printf ("non-hdf file to be written has fileId %d\n", fileId);
ret=PGS_MET Write (handles[ODL_IN MEMORY],NULL, fileId);

printf ("ret after PGS MET Write is %d\n",ret);

if (ret !=PGS_S SUCCESS && ret != PGSMET W _METADATA NOT SET)

{
if (ret == PGSMET E MAND NOT SET)
{

printf ("some mandatory parameters were not set\n");

}

else

{
printf ("ASCII write failed\n");

/*****x ywrite to default non-HDF file ***xxx/

ret=PGS MET Write (handles[ODL_ IN MEMORY], NULL, NULL);
printf ("ret after PGS MET Write is %d\n",ret);

if (ret !=PGS_S SUCCESS && ret != PGSMET W METADATA NOT SET)

{
if (ret == PGSMET E MAND NOT SET)

{

printf ("some mandatory parameters were not set\n");

7-7 162-WP-004-001

else

{
printf ("ASCII write failed\n");

(void) PGS_MET SDend(sdidl) ;

PGS _MET Remove () ;
free(informationname) ;

printf ("Complete...\n");
return 0;

7.3 The Metadata Configuration File (MCF) for Code in Section 7.2

/'k***********************/
/**'k**'k****'k****'k****'k*********'k**'k****'k**************************/
/* */
/* This is a working version of the MCF template that will be */
/* supplied with the next SDP Toolkit. This MCF template will */

/* NOT be official until the SDP Toolkit is released. All */
/* details are subject to change. */
/* */
/* This MCF file represents the ODL which is expected to be */
/* created when either Data Server or the MetaDataWorks tool */
/* uses the contents of an ESDT's INVENTORYMETADATA section in */
/* order to generate an ESDT-specific MCF. The level of */
/* metadata coverage presented here corresponds to the metadata */
/* requirement for granules in Full Class as described in */

/* Appendix B of DID 311 and Section 2.5 of the document 'BNF */
/* Representation of the B.0 Earth Science Data Model for the */

/* ECS Project' {420-TP-016-001). */
/* */
/* This MCF file's contents were based on the ESDT Descriptor */
/* file template Ver-1.6, 3/31/97. */
/* */

/~k***~k~k~k~k~k~k~k~k***~k~k~k~k~k***~k~k~k~k~k***~k~k~k****~k~k*************************/
/***/

GROUP = INVENTORYMETADATA
GROUPTYPE = MASTERGROUP

/* ECSDataGranule */
GROUP = ECSDataGranule

/* DNote: SizeMBECSDataGranule will be set by DSS, */

/* not by the science software. */
OBJECT = SizeMBECSDataGranule
Data Location = "DSS"

NUM VAL = 1

7-8 162-WP-004-001

TYPE = "DOUBLE"
Mandatory = "FALSE"
END OBJECT = SizeMBECSDataGranule

OBJECT = ReprocessingPlanned
Data Location = "PGE"
NUM VAL = 1
TYPE = "STRING"
Mandatory = "TRUE"
END OBJECT = ReprocessingPlanned

OBJECT = ReprocessingActual
Data Location = "PGE"
NUM VAL = 1
TYPE = "STRING"
Mandatory = "TRUE"
END OBJECT = ReprocessingActual

OBJECT = LocalGranulelID
Data Location = "PGE"
NUM VAL = 1
TYPE = "STRING"
Mandatory = "TRUE"

END OBJECT = LocalGranulelID

OBJECT = DayNightFlag
Data Location = "PGE"
NUM VAL = 1
TYPE = "STRING"
Mandatory = "TRUE"
END OBJECT = DayNightFlag

OBJECT = ProductionDateTime
Data Location = "TK"
NUM VAL = 1
TYPE = "DATETIME"
Mandatory = "TRUE"
END OBJECT = ProductionDateTime

OBJECT = LocalVersionID
Data Location = "PGE"
NUM VAL = 1
TYPE = "STRING"
Mandatory = "TRUE"
END OBJECT = LocalVersionID
END GROUP = ECSDataGranule
GROUP = MeasuredParameter
OBJECT = MeasuredParameterContainer
Data Location = "NONE"
Class = "M"
Mandatory = "TRUE"

OBJECT = ParameterName

7-9 162-WP-004-001

Data Location = "PGE"

Class = "M"

TYPE = "STRING"
NUM VAL = 1
Mandatory = "TRUE"

END OBJECT = ParameterName

GROUP = QAFlags

Class = "M"

OBJECT = AutomaticQualityFlag
Data Location = "PGE"
Mandatory = "TRUE"
TYPE = "STRING"
NUM VAL = 1

END OBJECT = AutomaticQualityFlag

OBJECT = AutomaticQualityFlagExplanation
Data Location = "PGE"
Mandatory = "TRUE"
TYPE = "STRING"
NUM VAL = 1
END OBJECT = AutomaticQualityFlagExplanation

OBJECT = OperationalQualityFlag

Data Location = "DAAC"
Mandatory = "FALSE"
TYPE = "STRING"

NUM VAL = 1
END OBJECT = OperationalQualityFlag

OBJECT = OperationalQualityFlagExplanation

Data Location = "DAAC"
Mandatory = "FALSE"
TYPE = "STRING"

NUM VAL = 1
END OBJECT = OperationalQualityFlagExplanation

OBJECT = ScienceQualityFlag

Data Location = "Dp"
Mandatory = "FALSE"
TYPE = "STRING"

NUM VAL = 1
END OBJECT = ScienceQualityFlag

OBJECT = ScienceQualityFlagExplanation

Data Location = "DP"
Mandatory = "FALSE"
TYPE = "STRING"

NUM VAL = 1
END OBJECT = ScienceQualityFlagExplanation

END GROUP = QAFlags

GROUP = QAStats
Class = "M"

OBJECT = QAPercentInterpolatedData

7-10 162-WP-004-001

Data Location = "PGE"
NUM VAL = 1
TYPE = "INTEGER"
Mandatory = "TRUE"
END OBJECT = QAPercentInterpolatedData

OBJECT = QAPercentMissingData
Data Location = "PGE"
NUM VAL = 1
TYPE = "INTEGER"
Mandatory = "TRUE"
END OBJECT = QAPercentMissingData

OBJECT = QAPercentOutofBoundsData
Data Location = "PGE"
NUM VAL = 1
TYPE = "INTEGER"
Mandatory = "TRUE"
END OBJECT = QAPercentOutofBoundsData

OBJECT = QAPercentCloudCover
Data Location = "PGE"
NUM VAL = 1
TYPE = "INTEGER"
Mandatory = "TRUE"
END OBJECT = QAPercentCloudCover
END GROUP = QAStats
END OBJECT = MeasuredParameterContainer
END GROUP = MeasuredParameter

GROUP = OrbitCalculatedSpatialDomain
OBJECT = OrbitCalculatedSpatialDomainContainer

Data Location = "NONE"
Class = "M"
Mandatory = "TRUE"

OBJECT = OrbitalModelName
Data Location = "PGE"
Mandatory = "TRUE"

Class = "M"
TYPE = "STRING"
NUM VAL = 1
END OBJECT = OrbitalModelName

OBJECT = OrbitNumber
Data Location = "PGE"
Mandatory = "TRUE"
Class = "M"
TYPE = "INTEGER"
NUM VAL = 1

END OBJECT = OrbitNumber

OBJECT = StartOrbitNumber
Data Location = "PGE"
Mandatory = "TRUE"
Class = "M"

7-11 162-WP-004-001

TYPE = "INTEGER"
NUM VAL = 1
END OBJECT = StartOrbitNumber

OBJECT = StopOrbitNumber
Data Location = "PGE"
Mandatory = "TRUE"

Class = "M"
TYPE = "INTEGER"
NUM VAL = 1
END OBJECT = StopOrbitNumber

OBJECT = EquatorCrossingLongitude
Data Location = "PGE"
Mandatory = "TRUE"
Class = "M"
TYPE = "DOUBLE"
NUM VAL = 1
END OBJECT = EquatorCrossingLongitude

OBJECT = EquatorCrossingTime
Data Location = "PGE"
Mandatory = "TRUE"

Class = "M"
TYPE = "TIME"
NUM VAL = 1
END OBJECT = EquatorCrossingTime

OBJECT = EquatorCrossingDate
Data Location = "PGE"
Mandatory = "TRUE"

Class = "M"
TYPE = "DATE"
NUM VAL = 1
END OBJECT = EquatorCrossingDate

END OBJECT = OrbitCalculatedSpatialDomainContainer
END GROUP = OrbitCalculatedSpatialDomain

GROUP = CollectionDescriptionClass

OBJECT = ShortName
Data Location = "MCF"
NUM VAL = 1
TYPE = "STRING"
Mandatory = "TRUE"
Value = "L70RF1"

END OBJECT = ShortName

OBJECT = VersionID
Data Location = "MCF"
NUM VAL = 1
TYPE = "STRING"
Mandatory = "TRUE"
Value = "1"

END OBJECT = VersionID

7-12 162-WP-004-001

END GROUP = CollectionDescriptionClass
GROUP = SpatialDomainContainer
GROUP = HorizontalSpatialDomainContainer

/* ZoneldentifierClass */
GROUP = ZonelIdentifierClass
OBJECT = Zoneldentifier
Data Location = "PGE"
NUM VAL = 1
TYPE = "STRING"
Mandatory = "TRUE"
END OBJECT = ZonelIdentifier
END GROUP = ZoneldentifierClass

/* BoundingRectangle */
GROUP = BoundingRectangle
OBJECT = WestBoundingCoordinate
Data Location = "PGE"
NUM VAL = 1
TYPE = "DOUBLE"
Mandatory = "TRUE"
END OBJECT = WestBoundingCoordinate

OBJECT = NorthBoundingCoordinate
Data Location = "PGE"
NUM VAL = 1
TYPE = "DOUBLE"
Mandatory = "TRUE"
END OBJECT = NorthBoundingCoordinate

OBJECT = EastBoundingCoordinate
Data Location = "PGE"
NUM VAL = 1
TYPE = "DOUBLE"
Mandatory = "TRUE"
END OBJECT = EastBoundingCoordinate

OBJECT = SouthBoundingCoordinate
Data Location = "PGE"
NUM VAL = 1
TYPE = "DOUBLE"
Mandatory = "TRUE"
END OBJECT = SouthBoundingCoordinate
END GROUP = BoundingRectangle
END GROUP = HorizontalSpatialDomainContainer
END GROUP = SpatialDomainContainer

/* RangeDateTime */
GROUP = RangeDateTime

OBJECT = RangeBeginningTime
Data Location = "PGE"
NUM VAL = 1
TYPE = "TIME"

7-13 162-WP-004-001

Mandatory = "TRUE"

END_ OBJECT

RangeBeginningTime

OBJECT = RangeEndingTime
Data Location = "PGE"
NUM VAL = 1
TYPE = "TIME"
Mandatory = "TRUE"

END OBJECT

RangeEndingTime

OBJECT = RangeBeginningDate
Data Location = "PGE"

NUM VAL

=1

TYPE = "DATE"
Mandatory = "TRUE"

END OBJECT

RangeBeginningDate

OBJECT = RangeEndingDate
Data Location = "PGE"

NUM VAL

=1

TYPE = "DATE"
Mandatory = "TRUE"

END_ OBJECT

RangeEndingDate

END GROUP = RangeDateTime

GROUP = AdditionalAttributes

OBJECT AdditionalAttributesContainer
Data Location = "NONE"
Class = "M"
Mandatory = "TRUE"
/* AdditionalAttributes */

OBJECT = AdditionalAttributeName

Data Location = "PGE"
Mandatory = "TRUE"
TYPE = "STRING"

Class = "M"

NUM VAL = 1

END_OBJECT = AdditionalAttributeName

/*

InformationContent */

GROUP = InformationContent

Class = "M"

OBJECT = ParameterValue
Data Location = "PGE"
Mandatory = "TRUE"

TYPE = "STRING"
NUM VAL = 1
END OBJECT = ParameterValue

END GROUP = InformationContent

END OBJECT = AdditionalAttributesContainer

7-14

162-WP-004-001

END GROUP = AdditionalAttributes
GROUP = OrbitParametersGranule

OBJECT = OrbitalParametersPointer
Data Location = "PGE"
Mandatory = "TRUE"
TYPE = "STRING"
NUM VAL = 1
END OBJECT = OrbitalParametersPointer

END GROUP = OrbitParametersGranule

/* StorageMediumClass */
GROUP = StorageMediumClass
OBJECT = StorageMedium
Data Location = "PGE"
NUM VAL = 10
TYPE = "STRING"
Mandatory = "TRUE"
END OBJECT = StorageMedium
END GROUP = StorageMediumClass

END GROUP = INVENTORYMETADATA

GROUP = ARCHIVEDMETADATA
GROUPTYPE = MASTERGROUP

/* BoundingRectangle */
GROUP = BoundingRectangle
OBJECT = WestBoundingCoordinate
Data Location = "PGE"
NUM VAL = 1
TYPE = "DOUBLE"
Mandatory = "TRUE"
END OBJECT = WestBoundingCoordinate

OBJECT = NorthBoundingCoordinate
Data Location = "PGE"
NUM VAL = 1
TYPE = "DOUBLE"
Mandatory = "TRUE"
END OBJECT = NorthBoundingCoordinate

OBJECT = EastBoundingCoordinate
Data Location = "PGE"
NUM VAL = 1
TYPE = "DOUBLE"
Mandatory = "TRUE"
END OBJECT = EastBoundingCoordinate

OBJECT = SouthBoundingCoordinate
Data Location = "PGE"
NUM VAL = 1
TYPE = "DOUBLE"
Mandatory = "TRUE"

7-15 162-WP-004-001

END OBJECT = SouthBoundingCoordinate
END GROUP = BoundingRectangle

END GROUP = ARCHIVEDMETADATA
END

7.4 The ODL Ouput File Which Results from Running Code in
Section 7.2

/** */
/** */
/* x/
/* This is a working version of the MCF template that will be */
/* supplied with the next SDP Toolkit. This MCF template will */
/* NOT be official until the SDP Toolkit is released. All */
/* details are subject to change. */
/xx/
/* This MCF file represents the ODL which is expected to be */

p p
/* created when either Data Server or the MetaDataWorks tool */
/* uses the contents of an ESDT's INVENTORYMETADATA section in */
/* order to generate an ESDT-specific MCF. The level of */
/* metadata coverage presented here corresponds to the metadata */
/* requirement for granules in Full Class as described in */
/* Appendix B of DID 311 and Section 2.5 of the document 'BNF */
/* Representation of the B.0 Earth Science Data Model for the */
/* ECS Project' {420-TP-016-001). */
/* x/
/* This MCF file's contents were based on the ESDT Descriptor */
/* file template Ver-1.6, 3/31/97. */
/* x/
/** */
/********'k'k'k'k'k'k'k'k'k********'k'k'k'k'k'k'k'k'k****************************** 'k/

GROUP = INVENTORYMETADATA
GROUPTYPE = MASTERGROUP
/* ECSDataGranule */
GROUP = ECSDATAGRANULE
OBJECT = REPROCESSINGPLANNED
NUM VAL =1
VALUE = "ReprocessingplannINVENTR"
END_ OBJECT = REPROCESSINGPLANNED
OBJECT = REPROCESSINGACTUAL
NUM VAL =1
VALUE = "Reprocessin"
END_ OBJECT = REPROCESSINGACTUAL

7-16 162-WP-004-001

OBJECT
NUM VAL
VALUE
END OBJECT

OBJECT
NUM VAL
VALUE
END OBJECT

OBJECT
NUM_VAL
VALUE

END OBJECT

OBJECT
NUM_VAL
VALUE

END OBJECT

END GROUP

/* MeasuredParameter */

GROUP

OBJECT
CLASS

OBJECT
CLASS
NUM VAL
VALUE

END OBJECT

/* QAFlags */

GROUP
CLASS

OBJECT
NUM VAL
CLASS
VALUE

END OBJECT

OBJECT
NUM VAL
CLASS
VALUE

END OBJECT

END_GROUP

LOCALGRANULEID
1

"ID1111"
LOCALGRANULEID

DAYNIGHTFLAG
1

"Flagl"
DAYNIGHTFLAG

PRODUCTIONDATETIME

1
"1999-11-23T18:16:01.000Z"
PRODUCTIONDATETIME

LOCALVERSIONID
1
"versionl234"
LOCALVERSIONID

ECSDATAGRANULE

MEASUREDPARAMETER

MEASUREDPARAMETERCONTAINER
"l"

= PARAMETERNAME
'll"

1

= "informationl"
= PARAMETERNAME

= QAFLAGS
= nqmn

= AUTOMATICQUALITYFLAG
=1

'll"

"NOT SET"

= AUTOMATICQUALITYFLAG

= AUTOMATICQUALITYFLAGEXPLANATION
1

= "]n

"Exercisel"

= AUTOMATICQUALITYFLAGEXPLANATION

= QAFLAGS

7-17

162-WP-004-001

/* QAStats */

GROUP
CLASS

OBJECT
NUM VAL
CLASS
VALUE
END OBJECT

OBJECT
NUM VAL
CLASS
VALUE
END OBJECT

OBJECT
NUM VAL
CLASS
VALUE
END OBJECT

OBJECT
NUM VAL
CLASS
VALUE
END OBJECT

END_GROUP
END OBJECT

OBJECT
CLASS

OBJECT
CLASS
NUM_VAL
VALUE

END OBJECT

/* QAFlags */

GROUP
CLASS

OBJECT
NUM VAL
CLASS
VALUE

END OBJECT

OBJECT
NUM VAL

= QASTATS
= nqn

= QAPERCENTINTERPOLATEDDATA
=1

= nqn

= 667788

= QAPERCENTINTERPOLATEDDATA

= QAPERCENTMISSINGDATA
=1

= nqn

= 12345

= QAPERCENTMISSINGDATA

= QAPERCENTOUTOFBOUNDSDATA
=1

= nqn

= 123

= QAPERCENTOUTOFBOUNDSDATA

= QAPERCENTCLOUDCOVER
=1

= nqn

= "NOT SET"

= QAPERCENTCLOUDCOVER

= QASTATS

MEASUREDPARAMETERCONTAINER

= MEASUREDPARAMETERCONTAINER

"2"

= PARAMETERNAME
"2"

1

= "information2"
= PARAMETERNAME

= QAFLAGS
= npmn

= AUTOMATICQUALITYFLAG
=1

= non

= "NOT SET"

= AUTOMATICQUALITYFLAG

= AUTOMATICQUALITYFLAGEXPLANATION
=1

7-18

162-WP-004-001

CLASS
VALUE
END OBJECT

END_GROUP

/* QAStats */

GROUP
CLASS

OBJECT
NUM VAL
CLASS
VALUE

END OBJECT

OBJECT
NUM VAL
CLASS
VALUE

END OBJECT

OBJECT
NUM VAL
CLASS
VALUE

END OBJECT

OBJECT
NUM VAL
CLASS
VALUE

END OBJECT

END_GROUP
END OBJECT

OBJECT
CLASS

OBJECT
CLASS
NUM_VAL
VALUE

END OBJECT

/* QAFlags */

GROUP
CLASS

OBJECT
NUM VAL

"2"
"NOT SET"

= AUTOMATICQUALITYFLAGEXPLANATION

= QAFLAGS

= QASTATS
= npmn

= QAPERCENTINTERPOLATEDDATA
1

"2"

= "NOT SET"

= QAPERCENTINTERPOLATEDDATA

= QAPERCENTMISSINGDATA
=1

= non

= 56789

= QAPERCENTMISSINGDATA

= QAPERCENTOUTOFBOUNDSDATA
=1

= non

= 23456

= QAPERCENTOUTOFBOUNDSDATA

= QAPERCENTCLOUDCOVER
=1

= non

= "NOT SET"

= QAPERCENTCLOUDCOVER

= QASTATS

MEASUREDPARAMETERCONTAINER

= MEASUREDPARAMETERCONTAINER

"3"

= PARAMETERNAME
= n3m

1
"information3"
= PARAMETERNAME

= QAFLAGS
= n3mn

= AUTOMATICQUALITYFLAG
=1

7-19

162-WP-004-001

CLASS
VALUE
END OBJECT

OBJECT
NUM_ VAL
CLASS
VALUE

END OBJECT

END_GROUP

/* QAStats */

GROUP
CLASS

OBJECT
NUM VAL
CLASS
VALUE

END OBJECT

OBJECT
NUM VAL
CLASS
VALUE

END OBJECT

OBJECT
NUM VAL
CLASS
VALUE

END OBJECT

OBJECT
NUM VAL
CLASS
VALUE

END OBJECT

END_GROUP
END OBJECT

OBJECT
CLASS

OBJECT
CLASS
NUM_VAL
VALUE

END OBJECT

/* QAFlags */

"3"
"NOT SET"
AUTOMATICQUALITYFLAG

AUTOMATICQUALITYFLAGEXPLANATION
1

"3"

"NOT SET"
AUTOMATICQUALITYFLAGEXPLANATION

QAFLAGS

QASTATS
"3"

QOAPERCENTINTERPOLATEDDATA
1

"3"

"NOT SET"
QAPERCENTINTERPOLATEDDATA

QOAPERCENTMISSINGDATA
1

"3"

"NOT SET"
QAPERCENTMISSINGDATA

QAPERCENTOUTOFBOUNDSDATA
1

"3"

"NOT SET"
QAPERCENTOUTOFBOUNDSDATA

QAPERCENTCLOUDCOVER
1

"3"

"NOT SET"
QAPERCENTCLOUDCOVER

QASTATS

MEASUREDPARAMETERCONTAINER

"4"

= MEASUREDPARAMETERCONTAINER

PARAMETERNAME
"4"

1

"information4"
PARAMETERNAME

7-20

162-WP-004-001

GROUP
CLASS

OBJECT
NUM_ VAL
CLASS
VALUE

END OBJECT

OBJECT
NUM_ VAL
CLASS
VALUE

END OBJECT

END_GROUP

/* QAStats */

GROUP
CLASS

OBJECT
NUM VAL
CLASS
VALUE

END OBJECT

OBJECT
NUM VAL
CLASS
VALUE

END OBJECT

OBJECT
NUM VAL
CLASS
VALUE

END OBJECT

OBJECT
NUM VAL
CLASS
VALUE
END OBJECT
END_GROUP
END OBJECT
END GROUP
GROUP

OBJECT

= QAFLAGS
= mygn

= AUTOMATICQUALITYFLAG
1

"4"

"NOT SET"

= AUTOMATICQUALITYFLAG

= AUTOMATICQUALITYFLAGEXPLANATION
=1

= mgn

= "NOT SET"

= AUTOMATICQUALITYFLAGEXPLANATION

= QAFLAGS

= QASTATS
= mygn

= QAPERCENTINTERPOLATEDDATA
=1

= mygn

= "NOT SET"

= QAPERCENTINTERPOLATEDDATA

= QAPERCENTMISSINGDATA
=1

= mygn

= "NOT SET"

= QAPERCENTMISSINGDATA

= QAPERCENTOUTOFBOUNDSDATA
=1

= mygn

= "NOT SET"

= QAPERCENTOUTOFBOUNDSDATA

= QAPERCENTCLOUDCOVER
=1

= mygn

= "NOT SET"

= QAPERCENTCLOUDCOVER

= QASTATS

MEASUREDPARAMETERCONTAINER

MEASUREDPARAMETER

ORBITCALCULATEDSPATIALDOMAIN

ORBITCALCULATEDSPATIALDOMAINCONTAIN

7-21

ER

162-WP-004-001

CLASS = "M"
OBJECT = ORBITALMODELNAME
CLASS = "M"
NUM_VAL =1
VALUE = "NOT SET"
END OBJECT = ORBITALMODELNAME
OBJECT = ORBITNUMBER
CLASS = "M"
NUM_VAL =1
VALUE = "NOT SET"
END OBJECT = ORBITNUMBER
OBJECT = STARTORBITNUMBER
CLASS = "M"
NUM_VAL =1
VALUE = "NOT SET"
END OBJECT = STARTORBITNUMBER
OBJECT = STOPORBITNUMBER
CLASS = "M"
NUM_VAL =1
VALUE = "NOT SET"
END OBJECT = STOPORBITNUMBER
OBJECT = EQUATORCROSSINGLONGITUDE
CLASS = "M"
NUM_VAL =1
VALUE = "NOT SET"
END OBJECT = EQUATORCROSSINGLONGITUDE
OBJECT = EQUATORCROSSINGTIME
CLASS = "M"
NUM_VAL =1
VALUE = "NOT SET"
END OBJECT = EQUATORCROSSINGTIME
OBJECT = EQUATORCROSSINGDATE
CLASS = "M"
NUM_VAL =1
VALUE = "NOT SET"
END OBJECT = EQUATORCROSSINGDATE
END OBJECT = ORBITCALCULATEDSPATIALDOMAINCONTAINER
END_GROUP = ORBITCALCULATEDSPATIALDOMAIN

/* CollectionDescriptionClass */

GROUP = COLLECTIONDESCRIPTIONCLASS
OBJECT = SHORTNAME
NUM_ VAL =1
VALUE = "L70RF1"
END OBJECT = SHORTNAME

7-22 162-WP-004-001

OBJECT = VERSIONID

NUM VAL =1
VALUE = ""
END OBJECT = VERSIONID
END GROUP = COLLECTIONDESCRIPTIONCLASS

/* SpatialDomainContainer */

GROUP = SPATIALDOMAINCONTAINER

GROUP = HORIZONTALSPATIALDOMAINCONTAINER

/* ZoneldentifierClass */

GROUP = ZONEIDENTIFIERCLASS
OBJECT = ZONEIDENTIFIER
NUM_ VAL =1
VALUE = "NOT SET"
END_ OBJECT = ZONEIDENTIFIER
END_GROUP = ZONEIDENTIFIERCLASS
/* BoundingRectangle */
GROUP = BOUNDINGRECTANGLE
OBJECT = WESTBOUNDINGCOORDINATE
NUM_ VAL =1
VALUE = 11.110000
END_ OBJECT = WESTBOUNDINGCOORDINATE
OBJECT = NORTHBOUNDINGCOORDINATE
NUM VAL =1
VALUE = 22.220000
END_ OBJECT = NORTHBOUNDINGCOORDINATE
OBJECT = EASTBOUNDINGCOORDINATE
NUM VAL =1
VALUE = 33.330000
END OBJECT = EASTBOUNDINGCOORDINATE
OBJECT = SOUTHBOUNDINGCOORDINATE
NUM_ VAL =1
VALUE = 44.440000
END OBJECT = SOUTHBOUNDINGCOORDINATE
END_GROUP = BOUNDINGRECTANGLE
END_GROUP = HORIZONTALSPATIALDOMAINCONTAINER
END GROUP = SPATIALDOMAINCONTAINER
7-23

162-WP-004-001

/* RangeDateTime */
GROUP

OBJECT
NUM VAL
VALUE
END OBJECT

OBJECT
NUM VAL
VALUE
END OBJECT

OBJECT
NUM_ VAL
VALUE

END OBJECT

OBJECT
NUM_VAL
VALUE

END OBJECT

END GROUP
GROUP

OBJECT
CLASS

RANGEDATETIME

= RANGEBEGINNINGTIME
=1

= "NOT SET"

= RANGEBEGINNINGTIME

= RANGEENDINGTIME
=1

= "NOT SET"

= RANGEENDINGTIME

= RANGEBEGINNINGDATE
=1

= "1997.07/30"

= RANGEBEGINNINGDATE

= RANGEENDINGDATE
=1

= "NOT SET"

= RANGEENDINGDATE
RANGEDATETIME
ADDITIONALATTRIBUTES

= ADDITIONALATTRIBUTESCONTAINER
"M"

/* AdditionalAttributes */

OBJECT
CLASS
NUM VAL
VALUE

END OBJECT

= ADDITIONALATTRIBUTENAME
= "M"

=1

= "NOT SET"

= ADDITIONALATTRIBUTENAME

/* InformationContent */

GROUP
CLASS

OBJECT
NUM_ VAL
CLASS
VALUE

END OBJECT

END_GROUP

END OBJECT

= INFORMATIONCONTENT
= V"

= PARAMETERVALUE
=1

M

"NOT SET"

= PARAMETERVALUE

= INFORMATIONCONTENT

= ADDITIONALATTRIBUTESCONTAINER

7-24

162-WP-004-001

END_GROUP = ADDITIONALATTRIBUTES

GROUP = ORBITPARAMETERSGRANULE
OBJECT = ORBITALPARAMETERSPOINTER
NUM_ VAL =1
VALUE = "NOT SET"
END OBJECT = ORBITALPARAMETERSPOINTER
END_GROUP = ORBITPARAMETERSGRANULE
GROUP = STORAGEMEDIUMCLASS
OBJECT = STORAGEMEDIUM
NUM_VAL = 10
VALUE = "NOT SET"
END_OBJECT = STORAGEMEDIUM
END GROUP = STORAGEMEDIUMCLASS
END_GROUP = INVENTORYMETADATA

END

7.5 The file filetable.temp used for example in Section 7.2

HHHHHHHHHHH R R AR R A
This file is needed for testing TIME tools. Only the Path for the files need to be changed.
#

The following IDs are defined in the TOOLKIT and they SHOULD NOT be changed
R R R R R R R R A
10100|LogStatus|/tk/ TOOLKIT MTD/test/test MET HDF5/LogStatus
5000|configfile.dat|/tk/ TOOLKIT MTD/runtime/configfile.dat

10252|GetAttrtemp|/tk/ TOOLKIT MTD/test/test MET HDF5/GetAttrtemp
10254|MCF Write.temp|/tk/ TOOLKIT _ MTD/test/test MET HDF5/MCFWrite.temp
10255|AsciiDump|/tk/ TOOLKIT MTD/test/test MET HDF5/AsciiDump
10256|temporary. MCF|/tk/ TOOLKIT MTD/test/test MET HDF5/temporary. MCF
10301|leapsec.dat|/tk/ TOOLKIT _ MTD/database/common/TD/leapsec dat
10401|utcpole.dat|/tk/ TOOLKIT MTD/database/common/CSC/utcpole.dat
10402|earthfigure.dat|/tk/ TOOLKIT MTD/database/common/CSC/earthfigure.dat
10601|de200.e0s|/tk/ TOOLKIT MTD/database/common/CBP/de200.eos
10801|sc_tags.dat|/tk/ TOOLKIT MTD/database/common/EPH/sc_tags.dat
10302[udunits.dat|/tk/ TOOLKIT MTD/database/common/CUC/udunits.dat

R R R R AR

Logical IDs assigned for input/output files can be changed BUT they

should be diffrent from the IDs assigned above.
R
10250 MCF _File|/tk/ TOOLKIT MTD/test/test MET HDFS5/MET TestData/MCF_File
10251|data_dict|/tk/TOOLKIT MTD/test/test MET HDF5/MET TestData/data_dict
5039|Swath_h5.hdf]/tk/ TOOLKIT MTD/test/test MET HDFS5/MET TestData/Swath_h5.hdf
HHHHHHHE

files to check PGS MET _InitNonMCF function
R

7-25 162-WP-004-001

5804|NAT _File|/tk/ TOOLKIT MTD/test/test MET HDF5/MET TestData/NAT _File
HEH R R R R R R R
End this table with next two lines. Last line should be ?

HEHHHE R R R R R R R R
0[DUMMY |/tk/TOOLKIT MTD/test/test MET _HDF5/MET_TestData/DUMMY

9

7-26 162-WP-004-001

Appendix A. Installation and Maintenance

A.1l Installation Procedures

A.1.1 Preliminary Step

Before installing HDFEQOS, you must already have installed NCSA HDF, Version 5-1.2.0 on
your host. The installation script will prompt for the paths to the HDF include and library
directories. Please see the SDP Toolkit Users Guide for the ECS Project, Section 5 for
instructions on installing both the Toolkit and HDF. See also: http://hdf.ncsa.uiuc.edu/ for
instructions on how to access HDF libraries.
A.1.2 Unpacking the Distribution File

1) Select a location for the HDFEOS directory tree. Installing HDFEQOS alone requires a disk
partition with at least 25 Mb of free space.

2) Copy the file HDF-EOSv3.0.tar.Z to the target directory by

typing the command:
cp HDF-EOSv3.0.tar.Z <target-dir>
where <target-dir> is the full pathname of your target directory.

3) Set your default directory to the target directory by typing the command:
cd <target-dir>

4) Uncompress this file and extract the contents by typing the command:
zcat HDF-EOSv3.0.tar.Z | tar xvf -

This will create a subdirectory of the current directory called 'hdfeos’. This is the top-level
HDFEOS directory, which contains the full HDFEOS directory structure.

A.1.3 Starting the Installation Procedure

1) Set your default directory to the top-level HDFEQOS directory by typing the command:
cd hdfeos

2) Select installation options.
Currently, the only options are those specific to the SGI Power Challenge platform.

A-1 162-WP-004-001

On the SGI Challenge, the default is to build HDFEOQOS in 64-bit mode, which is the same as the
Toolkit. The following table gives the option to specify the appropriate architecture to be built:

binary format architecture <install-options>
new 32-bit sQi32 -Sgi32
64 bit sgi64 -sQi64

Please note that the old-32-bit mode has been dropped as the default because it is no longer being
supported by SGI, it is therefore recommended that all users migrate to new-style 32 bit or 64 bit
mode.

3) Run the installation script.

Please note that the installation script for this release of HDFEOS requires user
interaction. Because of this, it should NOT be run as a background task.

3.0) If you wish to generate a log of this session, use the Unix 'script’ command. This command
runs a sub-shell that saves all terminal output to the specified file. To log the session, type:

script <logfile-name>

where <logfile-name> is the name of the log file

3.1) To run the installation script, type the command:
bin/INSTALL-HDFEQS <install-options>

where <install-options> is the list of options determined in the the previous step.

The installation script will then run. It will output various startup messages, beginning with:
HDFEOS installation starting at <date/time

3.2) Enter the full pathnames for the hdf5-1.2.0 library and include directory paths, when the
script prompts for them. If there is an error in the supplied paths, the script will exit.

NOTE: If the environment variables HDFLIB and/or HDFINC are set in your shell, the script
will use these for the default values. If this is not the first run of the script, the default values
will be taken from the values used for the last run of the script. In either of these cases, the
installation script will prompt with:

Current value of the HDF library directory is: <path>
Accept [y]/n:

and/or
Current value of the HDF include directory is: <path>
Accept [y]/n:

Make sure to type 'n' and hit return, if the defaults do not point to the correct directories. The
script will then prompt for the new values.

A-2 162-WP-004-001

3.3) The installation script will finish with the following message:
HDFEOS installation ending at <date/time>
3.4) (optional - see 3.0)

If you ran the Unix 'script' command to create a log file, then type 'exit' and hit return at the
command prompt. This will exit the sub-shell stated by 'script’ and save the log file.

Hint: The log file generated by the script command may contain 'hard return' characters at the
end of each line. These appear in some text editors as "*M". They can be removed with the
following command:

sed 's/.$//' <logfile-name> > <logfile-name>.new
where <logfile-name> is the name of the log file.

A.1.4 User Account Setup

Once HDFEQOS has been installed, the accounts of HDFEOS users must be set up to define
environment variables needed to compile and run code with HDFEOS (see parts 2 and 3 of the
Notes section, below). The type of setup depends on the user's login shell.

1A) C shell (csh) Users:

Edit the HDFEQS user's .cshrc file to include the following line:
source <HDFEOS-home-dir>/bin/$BRAND/hdfeos_env.csh

where <HDFEQOS-home-dir> is the full path of the HDFEOS home directory, and $BRAND is
an architecture-specific value for your host. Please refer to part 2 of the Notes section, below, to
determine the correct value.

The script hdfeos_env.csh sets up all the variables discussed in parts 2 and 3 of the Notes
section, below, and it adds the HDFEOS bin directory to the user path.

The environment variables will become available during all subsequent login sessions. To
activate them for the current session, simply type one of the two lines listed above, at the Unix
prompt.

Note regarding path setup with hdfeos_env.csh:

The script hdfeos_env.csh also makes available a variable called hdfeos_path. This can be added
to the user's path to ensure that it accesses the directories necessary for the compilers and other
utilities used to generate executable programs. It is not added to the user path by default,
because in many cases it adds unnecessary complexity to the user path. To add hdfeos_path to
the user path, modify the HDFEOS user's .cshrc file to include the following:

set my_path = ($path) # save path
source <HDFEOS-HOME-DIR>/bin/$BRAND/hdfeos_env.csh # HDFEOS setup
set path = ($my_path $hdfeos_path) # add hdfeos_path

A-3 162-WP-004-001

INSTEAD OF the line listed at the beginning of this step.

Note that it is the user's responsibility to set up his or her own path so that it doesn't duplicate
the directories set up in hdfeos_path. Please also note that the hdfeos_path is added AFTER the
user's path. This way, the user's directories will be searched first when running Unix
commands.

1B) Korn shell (ksh) Users:

Edit the HDFEOS user's .profile file to include the following line:
. <HDFEOS-home-dir>/bin/$BRAND/hdfeos_env.ksh

where <HDFEQOS-home-dir> is the full path of the HDFEOS home directory, and $BRAND is
an architecture-specific value for your host. Please refer to part 2 of the Notes section, below, to
determine the correct value.

The script hdfeos_env.ksh sets up all the variables discussed in part 2 and 3 of the Notes section,
below, and it adds the HDFEOS bin directory to the user path.

The environment variables will become available during all subsequent login sessions. To
activate them for the current session, simply type one of the two lines listed above, at the Unix
prompt.

Note regarding path setup with hdfeos_env.ksh:

The script hdfeos_env.ksh also makes available a variable called hdfeos_path. This can be added
to the user's path to ensure that it accesses the directories necessary for the compilers and other
utilities used to generate executable programs. It is not added to the user path by default,
because in many cases it adds unnecessary complexity to the user path. To add hdfeos_path to
the user path, modify the HDFEOS user's .profile file to include the following:

my_path="$PATH" # save path
. <HDFEOS-HOME-DIR>/bin/$BRAND/hdfeos_env.ksh # HDFEOS setup
PATH="$my _path:$hdfeos_path" ; export PATH # add hdfeos_path

INSTEAD OF the line listed at the beginning of this step.

Note that it is the user's responsibility to set up his or her own path so that it doesn't duplicate the
directories set up in hdfeos_path. Please also note that the hdfeos_path is added AFTER the
user's path. This way, the user's directories will be searched first when running Unix
commands.

1C) Bourne shell (sh) Users:

Set up the required HDFEOS environment variables by appending the contents of the file
<HDFEOQOS-home-dir>/bin/$BRAND/hdfeos_env.ksh to the end of the HDFEQOS user's .profile,
where <HDFEOS-home-dir> s the full path of the HDFEOS home directory, and $BRAND is
an architecture-specific value for your host. Please refer to part 2 of the Notes section, below,
to determine the correct value.

A-4 162-WP-004-001

The environment variables will become available during all subsequent login sessions. To
activate them, log out and then log back in.

A.1.5 File Cleanup

Once HDFEOS has been built and tested, you can delete certain temporary files and directories
to save some disk space. Note that once these files have been removed, you will need to unpack
the original distribution file in order to re-do the installation.

To remove these files:

cd <HDFEQOS-home-dir>/bin
rm -rf tmp
cd <HDFEQOS-home-dir>/lib
rm -rf tmp

A.1.6 Compiling and Linking with HDFEOS

In order to compile and link programs with the HDFEQOS you must access the HDFEQOS include
and library files. To do this be sure that your makefiles include something like the following:
INCLUDE = -I. -1I$(HDFEOS_INC) -I$(HDFINC)
LIBRARY =-L. -L$(HDFEOS_LIB) -L$(HDFLIB)
LDFLAGS = -lhdfeos -IGctp -lhdf -Insl -Im (Sun platform)
LDFLAGS = -lhdfeos -IGctp -Ihdf -Im (others)
The environment variables HDFEOS_INC, HDFEOS_LIB, HDFINC and HDFLIB are set up by

the HDFEOS environment scripts (see User Setup, above). The refer to the include and library
directories for HDFEOS and HDF, respectively.

The INCLUDE macro should be included in all compilation statements. The LIBRARY an
LDFLAGS macros should be included in all link statements.

A.2 Notes

1) Approved Platforms

HDFEOS was built and tested in a multi-platform environment. The list of approved platforms,
which includes information about operating system and compiler versions, may be found in the
HDFEOS User's Guide and is also listed below.

Platform oS Version C Compiler FORTRAN77
Sun Sparc Solaris 251 SunC 4.0 Sun FORTRAN 4.0
SGI Power Challenge | IRIX 6.2 SGIC7.0 SGI FORTRAN 7.0

Note: The compilers are supplied by the vendor. The SGI Power Challenge (64-bit mode) had
the native SGI FORTRAN 90 7.0.

A-5 162-WP-004-001

2) Architecture Type Names

To track architecture dependencies, HDFEOS defines the environment variable $BRAND.
Following is a list of valid values for this variable, which is referred to throughout this
document:

$BRAND Architecture
sgi64 SGI Power Challenge (64-bit mode)
sun5 Sun: SunOS 5.x

3) Directory and File Environment Variables

In order to use the HDFEOS library and utilities, a number of environment variables MUST be
set up to point to HDFEOS directories and files. These variables are automatically set up in
User Account Setup section of the installation instructions. They are listed here for reference:

name value

HDFEOS_HOME <install-path>/hdfeos top-level directory
(where <install-path> is the absolute directory path above hdfeos)

description

HDFEOS_BIN $HDFEOS_HOME/bin/$BRAND executable files
HDFEOS_INC $HDFEOS_HOME/include header files
HDFEOS_LIB HDFEOS_HOME/Ilib/$SBRAND library files
HDFEOS_OBJ $HDFEOS_HOME/0bj/$BRAND object files
HDFEOS_SRC $HDFEOS_HOME/src source files

4) Other Environment Variables

In addition, the makefiles which are used to build the library require certain machine-specific
environment variables. These set compilers, compilation flags and libraries, allowing a single
set of makefiles to serve on multiple platforms. The User Account Setup section of the
installation instructions explains how to set them up. They are listed here for reference:

name description

CcC C compiler

CFLAGS default C flags (optimize, ANSI)

C CFH C w/ cfortran.h callable from FORTRAN
CFHFLAGS CFLAGS + C_CFH

C F77_CFH C w/ cfortran.h calling FORTRAN

C F77_LIB FORTRAN lib called by C main

F77 FORTRAN compiler

F7T7TFLAGS common FORTRAN flags

F77_CFH FORTRAN callable from C w/ cfortran.h
F77 C CFH FORTRAN calling C w/ cfortran.h
CFH_F77 same as F77_C_CFH

F77_C_LIB C lib called by FORTRAN main

A-6 162-WP-004-001

5) Tools Provided with This Release

For a complete list of the tools provided with this release of HDFEQS, please refer to Section 7
of this document.

6) Copyright Notice for cfortran.h

HDFEOS functions are written in C. These C-based tools include the file cfortran.h, using it to
generate machine-independent FORTRAN bindings. The cfortran.h facility includes the
following notice which must accompany distributions that use it:

THIS PACKAGE, |I.E. CFORTRAN.H, THIS DOCUMENT, AND THE CFORTRAN.H
EXAMPLEPROGRAMS ARE PROPERTY OF THE AUTHOR WHO RESERVES ALL
RIGHTS. THIS PACKAGE ANDTHE CODE IT PRODUCES MAY BE FREELY
DISTRIBUTED WITHOUT FEES, SUBJECT TO THEFOLLOWING RESTRICTIONS:

- YOU MUST ACCOMPANY ANY COPIES OR DISTRIBUTION WITH THIS

(UNALTERED) NOTICE.

- YOU MAY NOT RECEIVE MONEY FOR THE DISTRIBUTION OR FOR ITS MEDIA
(E.G. TAPE, DISK, COMPUTER, PAPER.)

- YOU MAY NOT PREVENT OTHERS FROM COPYING IT FREELY.

- YOU MAY NOT DISTRIBUTE MODIFIED VERSIONS WITHOUT CLEARLY
DOCUMENTING YOUR

CHANGES AND NOTIFYING THE AUTHOR.
- YOU MAY NOT MISREPRESENTED THE ORIGIN OF THIS SOFTWARE, EITHER BY
EXPLICIT CLAIM OR BY OMISSION.

THE INTENT OF THE ABOVE TERMS IS TO ENSURE THAT THE CFORTRAN.H
PACKAGE NOT BEUSED FOR PROFIT MAKING ACTIVITIES UNLESS SOME
ROYALTY ARRANGEMENT IS ENTERED INTO WITH ITS AUTHOR.

THIS SOFTWARE IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESSED OR IMPLIED. THE ENTIRE RISK AS TO THE QUALITY AND
PERFORMANCE OF THE SOFTWARE IS WITH YOU. SHOULD THE SOFTWARE
PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
REPAIR OR CORRECTION. THE AUTHOR IS NOT RESPONSIBLE FOR ANY SUPPORT
OR SERVICE OF THE CFORTRAN.H PACKAGE.

Burkhard Burow

burow@vxdesy.cern.ch

A.3 Test Drivers
Also included with this software delivery is a tar file containing test driver programs.

These test programs are provided to aid the user in the development of software using the HDF-
EOS library. The user may run the same test cases as included in this file to verify that the

A-7 162-WP-004-001

software is functioning correctly. These programs were written to support the internal testing and
are not an official part of the delivery. Users make use of them at their own risk. No support will
be provided to the user of these programs. The tar file contains source code for a drivers in C and
FORTRAN for each tool; sample output files; and input files and/or shell scripts, where
applicable.

The UNIX command: “zcat HDF-EOS3.0v1.00_ TestDrivers.tar.Z | tar xvf” will create a
directory called test_drivers beneath the current directory containing all these test files
A.4 User Feedback Mechanism

The mechanism for handling user feedback, documentation and software discrepancies, and bug
reports follows:

1) The following accounts at the ECS Landover facility have been set up for user response:
- pgstlkit@eos.hitc.com and

- hdfeos@eos.hitc.com

2) Users will e-mail problem reports and comments to the above account. A receipt will be
returned to the sender. A workoff plan for the discrepancy will be developed and status
report issued once a month. Responses will be prioritized based on the severity of the
problem and the available resources. Simple bug fixes will be turned around sooner,
while requested functional enhancements to the Toolkit will be placed in a recommended
requirements data base (RRDB) and handled more formally.

3) In order to help expedite responses, we request the following information be supplied
with problem reports:

- Name:
- Date:

- EOS Affiliation (DAAC, Instrument, Earth Science Data and Information System
(ESDIS), etc.):

— Phone No.:

Development Environment:

- Computing Platform:

- Operating System:

— Compiler and Compiler Flags:
- Tool Name:

- Problem Description:

A-8 162-WP-004-001

4)

(Please include exact inputs to and outputs from the toolkit call, including error code
returned by the function, plus exact error message returned where applicable.)

Suggested Resolution (include code fixes or workarounds if applicable):

In addition to the email response mechanism, a phone answering machine is also
provided. The telephone number is: 301-925-0781. Calls will be returned as soon as
possible. We note, however, that email is our preferred method of responding to users.

A-9 162-WP-004-001

This page intentionally left blank.

A-10 162-WP-004-001

Abbreviations and Acronyms

AlI&T
AIRS
API
ASTER
CCSDS
CDRL
CDS
CERES
CM
COTS
CcucC
CucC
DAAC
DBMS
DCE
DCW
DEM
DTM
ECR
ECS
EDC
EDHS
EDOS
EOS
EOSAM
EOSDIS

algorithm integration & test
Atmospheric Infrared Sounder

application program interface

Advanced Spaceborne Thermal Emission and Reflection Radiometer

Consultative Committee on Space Data Systems
Contract Data Requirements List

CCSDS day segmented time code

Clouds and Earth Radiant Energy System
configuration management

commercial off-the—shelf software

constant and unit conversions

CCSDS unsegmented time code

distributed active archive center

database management system

distributed computing environment

Digital Chart of the World

digital elevation model

digital terrain model

Earth centered rotating

EOSDIS Core System

Earth Resources Observation Systems (EROS) Data Center
ECS Data Handling System

EOSDIS Data and Operations System

Earth Observing System

EOS AM Project (morning spacecraft series)

Earth Observing System Data and Information System

AB-1

162-WP-004-001

EOSPM
ESDIS
FDF
FOV
ftp
GCT
GCTP
GD
GPS
GSFC
HDF
HITC
http
I&T
ICD
IDL

IWG
JPL
LaRC
LIS
M&O
MCF
MET
MODIS
MSFC
NASA
NCSA
netCDF

EOS PM Project (afternoon spacecraft series)

Earth Science Data and Information System (GSFC Code 505)

flight dynamics facility

field of view

file transfer protocol

geo—coordinate transformation

general cartographic transformation package
grid

Global Positioning System

Goddard Space Flight Center

hierarchical data format

Hughes Information Technology Corporation
hypertext transport protocol

integration & test

interface control document

interactive data language

Internet protocol

Investigator Working Group

Jet Propulsion Laboratory

Langley Research Center

Lightening Imaging Sensor

maintenance and operations

metadata configuration file

metadata

Moderate—Resolution Imaging Spectroradiometer
Marshall Space Flight Center

National Aeronautics and Space Administration
National Center for Supercomputer Applications

network common data format

AB-2

162-WP-004-001

NGDC National Geophysical Data Center

NMC National Meteorological Center (NOAA)

ODL object description language

PC process control

PCF process control file

PDPS planning & data production system

PGE product generation executive (formerly product generation executable)
POSIX Portable Operating System Interface for Computer Environments
PT point

QA quality assurance

RDBMS relational data base management system

RPC remote procedure call

RRDB recommended requirements database

SCF Science Computing Facility

SDP science data production

SDPF science data processing facility

SGI Silicon Graphics Incorporated

SMF status message file

SMP Symmetric Multi-Processing

SOM Space Oblique Mercator

SPSO Science Processing Support Office

SSM/I Special Sensor for Microwave/Imaging

SW swath

TAI International Atomic Time

TBD to be determined

TDRSS Tracking and Data Relay Satellite System

TRMM Tropical Rainfall Measuring Mission (joint US — Japan)
UARS Upper Atmosphere Research Satellite

UCAR University Corporation for Atmospheric Research

AB-3 162-WP-004-001

URL
USNO
uT
UTC
UTCF
UTM
VPF
WWW

universal reference locator
United States Naval Observatory
universal time

Coordinated Universal Time
universal time correlation factor
universal transverse mercator
vector product format

World Wide Web

AB-4

162-WP-004-001

